Series Tests

1. The test for divergence:  If 
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 then the series 
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diverges.  Always use this test first.

2. The integral test: If 
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 then the series
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 converges.  If 
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 then the series 
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diverges.  Use this if it is easy to integrate 
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3. The p-series test.  If 
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 use this test.  If 
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 the series 
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diverges.  If 
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 the series 
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converges.

4. The comparison test.  If   
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 is a known convergent series and 
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 then the series converges. If   
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 is a known divergent series and 
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 then the series diverges.  If 
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 can be compared to a series that is known to converge or diverge then use this test.

5. Limit comparison test.  If 
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 where C is a finite number and C > 0 then both series converge or diverge.  Use this if you can compare 
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 to a series but you can’t tell if the series is greater or smaller than the compared series.

6. Alternating series test. If  
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(an alternating series) where 
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 and 
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 then the series converges.  Use this for alternating series.

7. Ratio Test.  If  
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 the series is absolutely convergent. If 
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 the series is divergent. If  
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 then you need more tests.  Use this test if the others aren’t obvious or if  
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 contains a mixture of factorials, geometric, and p-series.

8. 
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 then the series is absolutely convergent. If 
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 then the series diverges.  Use this if your general term is in the form of 
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