Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

- 1. If the parametric curve x = f(t), y = g(t) satisfies g'(1) = 0, then it has a horizontal tangent when t = 1.
- **2.** If x = f(t) and y = g(t) are twice differentiable, then $d^2y/dx^2 = (d^2y/dt^2)/(d^2x/dt^2)$.
- 3. The length of the curve $x = f(t), y = g(t), a \le t \le b$, is $\int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2} dt$.
- **4.** If a point is represented by (x, y) in Cartesian coordinates (where $x \neq 0$) and (r, θ) in polar coordinates, then $\theta = \tan^{-1}(y/x)$.

- 5. The polar curves $r = 1 \sin 2\theta$ and $r = \sin 2\theta 1$ have the same graph.
- **6.** The equations r = 2, $x^2 + y^2 = 4$, and $x = 2 \sin 3t$, $y = 2 \cos 3t$ ($0 \le t \le 2\pi$) all have the same graph.
- 7. The parametric equations $x = t^2$, $y = t^4$ have the same graph as $x = t^3$, $y = t^6$.
- 8. The graph of $y^2 = 2y + 3x$ is a parabola.
- 9. A tangent line to a parabola intersects the parabola only once.
- **10.** A hyperbola never intersects its directrix.

EXERCISES 🛛

1–4 IIII Sketch the parametric curve and eliminate the parameter to find the Cartesian equation of the curve.

1.
$$x = t^2 + 4t$$
, $y = 2 - t$, $-4 \le t \le 1$
2. $x = 1 + e^{2t}$, $y = e^t$
3. $x = \tan \theta$, $y = \cot \theta$
4. $x = 2\cos \theta$, $y = 1 + \sin \theta$

- 5. Write three different sets of parametric equations for the curve $y = \sqrt{x}$.
- b. Use the graphs of x = f(t) and y = g(t) to sketch the parametric curve x = f(t), y = g(t). Indicate with arrows the direction in which the curve is traced as t increases.

7–14 IIII Sketch the polar curve.

7.	$r = 1 - \cos \theta$						$r = \sin 4\theta$				
9.	$r = 1 + \cos 2\theta$					10.	$r = 3 + \cos 3\theta$				
11.	1. $r^2 = \sec 2\theta$						12. $r = 2 \cos(\theta/2)$				
13.	$r = \frac{1}{1 + \cos \theta}$						$r = \frac{8}{4+3\sin\theta}$				

15–16 III Find a polar equation for the curve represented by the given Cartesian equation.

15. x + y = 2**16.** $x^2 + y^2 = 2$

- I17. The curve with polar equation r = (sin θ)/θ is called a cochleoid. Use a graph of r as a function of θ in Cartesian coordinates to sketch the cochleoid by hand. Then graph it with a machine to check your sketch.
- 18. Graph the ellipse $r = 2/(4 3 \cos \theta)$ and its directrix. Also graph the ellipse obtained by rotation about the origin through an angle $2\pi/3$.

19–22 IIII Find the slope of the tangent line to the given curve at the point corresponding to the specified value of the parameter.

19.
$$x = \ln t$$
, $y = 1 + t^{2}$; $t = 1$
20. $x = t^{3} + 6t + 1$, $y = 2t - t^{2}$; $t = -1$
21. $r = e^{-\theta}$; $\theta = \pi$
22. $r = 3 + \cos 3\theta$; $\theta = \pi/2$
23-24 IIII Find dy/dx and $d^{2}y/dx^{2}$.
23. $x = t \cos t$, $y = t \sin t$
24. $x = 1 + t^{2}$, $y = t - t^{3}$

25. Use a graph to estimate the coordinates of the lowest point on the curve $x = t^3 - 3t$, $y = t^2 + t + 1$. Then use calculus to find the exact coordinates.

- **26.** Find the area enclosed by the loop of the curve in Exercise 25.
- **27.** At what points does the curve

 $x = 2a \cos t - a \cos 2t$ $y = 2a \sin t - a \sin 2t$

have vertical or horizontal tangents? Use this information to help sketch the curve.

- **28.** Find the area enclosed by the curve in Exercise 27.
- **29.** Find the area enclosed by the curve $r^2 = 9 \cos 5\theta$.
- **30.** Find the area enclosed by the inner loop of the curve $r = 1 3 \sin \theta$.
- **31.** Find the points of intersection of the curves r = 2 and $r = 4 \cos \theta$.
- **32.** Find the points of intersection of the curves $r = \cot \theta$ and $r = 2 \cos \theta$.
- **33.** Find the area of the region that lies inside both of the circles $r = 2 \sin \theta$ and $r = \sin \theta + \cos \theta$.
- **34.** Find the area of the region that lies inside the curve $r = 2 + \cos 2\theta$ but outside the curve $r = 2 + \sin \theta$.
- **35–38** III Find the length of the curve.

35.
$$x = 3t^2$$
, $y = 2t^3$, $0 \le t \le 2$
36. $x = 2 + 3t$, $y = \cosh 3t$, $0 \le t \le 1$
37. $r = 1/\theta$, $\pi \le \theta \le 2\pi$
38. $r = \sin^3(\theta/3)$, $0 \le \theta \le \pi$

39–40 IIII Find the area of the surface obtained by rotating the given curve about the *x*-axis.

39.
$$x = 4\sqrt{t}$$
, $y = \frac{t^3}{3} + \frac{1}{2t^2}$, $1 \le t \le 4$
40. $x = 2 + 3t$, $y = \cosh 3t$, $0 \le t \le 1$

41. The curves defined by the parametric equations

$$x = \frac{t^2 - c}{t^2 + 1}$$
 $y = \frac{t(t^2 - c)}{t^2 + 1}$

are called **strophoids** (from a Greek word meaning "to turn or twist"). Investigate how these curves vary as *c* varies.

42. A family of curves has polar equations $r^a = |\sin 2\theta|$ where *a* is a positive number. Investigate how the curves change as *a* changes.

43–46 IIII Find the foci and vertices and sketch the graph.

43.
$$\frac{x^2}{9} + \frac{y^2}{8} = 1$$

44. $4x^2 - y^2 = 16$

45. $6y^2 + x - 36y + 55 = 0$

46. $25x^2 + 4y^2 + 50x - 16y = 59$

- **47.** Find an equation of the parabola with focus (0, 6) and directrix y = 2.
- **48.** Find an equation of the hyperbola with foci $(0, \pm 5)$ and vertices $(0, \pm 2)$.
- **49.** Find an equation of the hyperbola with foci $(\pm 3, 0)$ and asymptotes $2y = \pm x$.
- **50.** Find an equation of the ellipse with foci $(3, \pm 2)$ and major axis with length 8.
- **51.** Find an equation for the ellipse that shares a vertex and a focus with the parabola $x^2 + y = 100$ and that has its other focus at the origin.
- **52.** Show that if *m* is any real number, then there are exactly two lines of slope *m* that are tangent to the ellipse $x^2/a^2 + y^2/b^2 = 1$ and their equations are $y = mx \pm \sqrt{a^2m^2 + b^2}$.
- **53.** Find a polar equation for the ellipse with focus at the origin, eccentricity $\frac{1}{3}$, and directrix with equation $r = 4 \sec \theta$.
- **54.** Show that the angles between the polar axis and the asymptotes of the hyperbola $r = ed/(1 e \cos \theta), e > 1$, are given by $\cos^{-1}(\pm 1/e)$.
- **55.** In the figure the circle of radius *a* is stationary, and for every θ , the point *P* is the midpoint of the segment *QR*. The curve traced out by *P* for $0 < \theta < \pi$ is called the **longbow curve**. Find parametric equations for this curve.

