
April 4, 2011

11 PARAMETRIC EQUATIONS,
POLAR COORDINATES,
AND CONIC SECTIONS

11.1 Parametric Equations

Preliminary Questions
1. Describe the shape of the curve x = 3 cos t, y = 3 sin t .

solution For all t ,

x2 + y2 = (3 cos t)2 + (3 sin t)2 = 9(cos2 t + sin2 t) = 9 · 1 = 9,

therefore the curve is on the circle x2 + y2 = 9. Also, each point on the circle x2 + y2 = 9 can be represented in the
form (3 cos t, 3 sin t) for some value of t . We conclude that the curve x = 3 cos t , y = 3 sin t is the circle of radius 3
centered at the origin.

2. How does x = 4 + 3 cos t, y = 5 + 3 sin t differ from the curve in the previous question?

solution In this case we have

(x − 4)2 + (y − 5)2 = (3 cos t)2 + (3 sin t)2 = 9(cos2 t + sin2 t) = 9 · 1 = 9

Therefore, the given equations parametrize the circle of radius 3 centered at the point (4, 5).

3. What is the maximum height of a particle whose path has parametric equations x = t9, y = 4 − t2?

solution The particle’s height is y = 4 − t2. To find the maximum height we set the derivative equal to zero and
solve:

dy

dt
= d

dt
(4 − t2) = −2t = 0 or t = 0

The maximum height is y(0) = 4 − 02 = 4.

4. Can the parametric curve (t, sin t) be represented as a graph y = f (x)? What about (sin t, t)?

solution In the parametric curve (t, sin t) we have x = t and y = sin t , therefore, y = sin x. That is, the curve can be
represented as a graph of a function. In the parametric curve (sin t, t) we have x = sin t , y = t , therefore x = sin y. This
equation does not define y as a function of x, therefore the parametric curve (sin t, t) cannot be represented as a graph of
a function y = f (x).

5. Match the derivatives with a verbal description:

(a)
dx

dt
(b)

dy

dt
(c)

dy

dx
(i) Slope of the tangent line to the curve

(ii) Vertical rate of change with respect to time

(iii) Horizontal rate of change with respect to time

solution

(a) The derivative
dx

dt
is the horizontal rate of change with respect to time.

(b) The derivative
dy

dt
is the vertical rate of change with respect to time.

(c) The derivative
dy

dx
is the slope of the tangent line to the curve.

Hence, (a) ↔ (iii), (b) ↔ (ii), (c) ↔ (i)
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Exercises
1. Find the coordinates at times t = 0, 2, 4 of a particle following the path x = 1 + t3, y = 9 − 3t2.

solution Substituting t = 0, t = 2, and t = 4 into x = 1 + t3, y = 9 − 3t2 gives the coordinates of the particle at
these times respectively. That is,

(t = 0) x = 1 + 03 = 1, y = 9 − 3 · 02 = 9 ⇒ (1, 9)

(t = 2) x = 1 + 23 = 9, y = 9 − 3 · 22 = −3 ⇒ (9, −3)

(t = 4) x = 1 + 43 = 65, y = 9 − 3 · 42 = −39 ⇒ (65, −39).

2. Find the coordinates at t = 0, π
4 , π of a particle moving along the path c(t) = (cos 2t, sin2 t).

solution Setting t = 0, t = π
4 , and t = π in c(t) = (cos 2t, sin2 t) we obtain the following coordinates of the particle:

t = 0: (cos 2 · 0, sin2 0) = (1, 0)

t = π
4 : (cos 2π

4 , sin2 π
4 ) = (0, 1

2 )

t = π : (cos 2π, sin2 π) = (1, 0)

3. Show that the path traced by the bullet in Example 3 is a parabola by eliminating the parameter.
solution The path traced by the bullet is given by the following parametric equations:

x = 200t, y = 400t − 16t2

We eliminate the parameter. Since x = 200t , we have t = x

200
. Substituting into the equation for y we obtain:

y = 400t − 16t2 = 400 · x

200
− 16

( x

200

)2 = 2x − x2

2500

The equation y = − x2

2500
+ 2x is the equation of a parabola.

4. Use the table of values to sketch the parametric curve (x(t), y(t)), indicating the direction of motion.

t −3 −2 −1 0 1 2 3

x −15 0 3 0 −3 0 15

y 5 0 −3 −4 −3 0 5

solution We mark the given points on the xy-plane and connect the points corresponding to successive values of t in
the direction of increasing t . We get the following trajectory (there are other correct answers):

5 10 15
x

−5
−2

−4

−10−15

−6

2

6

4

y

t = −3

t = −2 t = 2

t = −1
t = 0

t = 3

t = 1

5. Graph the parametric curves. Include arrows indicating the direction of motion.
(a) (t, t), −∞ < t < ∞ (b) (sin t, sin t), 0 ≤ t ≤ 2π

(c) (et , et ), −∞ < t < ∞ (d) (t3, t3), −1 ≤ t ≤ 1

solution
(a) For the trajectory c(t) = (t, t), −∞ < t < ∞ we have y = x. Also the two coordinates tend to ∞ and −∞ as
t → ∞ and t → −∞ respectively. The graph is shown next:

x

y
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(b) For the curve c(t) = (sin t, sin t), 0 ≤ t ≤ 2π , we have y = x. sin t is increasing for 0 ≤ t ≤ π
2 , decreasing for

π
2 ≤ t ≤ 3π

2 and increasing again for 3π
2 ≤ t ≤ 2π . Hence the particle moves from c(0) = (0, 0) to c(π

2 ) = (1, 1), then

moves back to c( 3π
2 ) = (−1, −1) and then returns to c(2π) = (0, 0). We obtain the following trajectory:

x

y

t =     (1,1)π
2

t = 0
x

y

t =     (1,1)π
2

t =      (−1,−1)3π
2

x

y

t =      (−1,−1)3π
2

0 < t ≤ π
2

π
2 ≤ t ≤ 3π

2
3π
2 ≤ t < 2π

These three parts of the trajectory are shown together in the next figure:

x

y

t =      (−1,−1)3π
2

t =     (1,1)π
2

t = 0
t = 2π

(c) For the trajectory c(t) = (et , et ), −∞ < t < ∞, we have y = x. However since lim
t→−∞ et = 0 and lim

t→∞ et = ∞,

the trajectory is the part of the line y = x, 0 < x.

x

y

(d) For the trajectory c(t) = (t3, t3), −1 ≤ t ≤ 1, we have again y = x. Since the function t3 is increasing the particle
moves in one direction starting at ((−1)3, (−1)3) = (−1, −1) and ending at (13, 13) = (1, 1). The trajectory is shown
next:

x

y

t = 1(1,1)

t = −1 (−1,−1)

6. Give two different parametrizations of the line through (4, 1) with slope 2.

solution The equation of the line through (4, 1) with slope 2 is y − 1 = 2(x − 4) or y = 2x − 7. One parametrization
is obtained by choosing the x coordinate as the parameter. That is, x = t . Hence y = 2t − 7 and we get x = t , y = 2t − 7,
−∞ < t < ∞. Another parametrization is given by x = t

2 , y = t − 7, −∞ < t < ∞.
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In Exercises 7–14, express in the form y = f (x) by eliminating the parameter.

7. x = t + 3, y = 4t

solution We eliminate the parameter. Since x = t + 3, we have t = x − 3. Substituting into y = 4t we obtain

y = 4t = 4(x − 3) ⇒ y = 4x − 12

8. x = t−1, y = t−2

solution From x = t−1, we have t = x−1. Substituting in y = t−2 we obtain

y = t−2 = (x−1)−2 = x2 ⇒ y = x2, x �= 0.

9. x = t , y = tan−1(t3 + et )

solution Replacing t by x in the equation for y we obtain y = tan−1(x3 + ex).

10. x = t2, y = t3 + 1

solution From x = t2 we get t = ±√
x. Substituting into y = t3 + 1 we obtain

y = t3 + 1 = (±√
x)3 + 1 = ±

√
x3 + 1, x ≥ 0.

Since we must have y a function of x, we should probably choose either the positive or negative root.

11. x = e−2t , y = 6e4t

solution We eliminate the parameter. Since x = e−2t , we have −2t = ln x or t = − 1
2 ln x. Substituting in y = 6e4t

we get

y = 6e4t = 6e4·(− 1
2 ln x) = 6e−2 ln x = 6eln x−2 = 6x−2 ⇒ y = 6

x2
, x > 0.

12. x = 1 + t−1, y = t2

solution From x = 1 + t−1, we get t−1 = x − 1 or t = 1
x−1 . We now substitute t = 1

x−1 in y = t2 to obtain

y = t2 =
(

1

x − 1

)2
⇒ y = 1

(x − 1)2
, x �= 1.

13. x = ln t , y = 2 − t

solution Since x = ln t we have t = ex . Substituting in y = 2 − t we obtain y = 2 − ex .

14. x = cos t , y = tan t

solution We use the trigonometric identity sin t = ±
√

1 − cos2 t to write

y = tan t = sin t

cos t
= ±

√
1 − cos2 t

cos t
.

We now express y in terms of x:

y = tan t = ±
√

1 − x2

x
⇒ y = ±

√
1 − x2

x
, x �= 0.

Since we must have y a function of x, we should probably choose either the positive or negative root.

In Exercises 15–18, graph the curve and draw an arrow specifying the direction corresponding to motion.

15. x = 1
2 t , y = 2t2

solution Let c(t) = (x(t), y(t)) = ( 1
2 t, 2t2). Then c(−t) = (−x(t), y(t)) so the curve is symmetric with respect to

the y-axis. Also, the function 1
2 t is increasing. Hence there is only one direction of motion on the curve. The corresponding

function is the parabola y = 2 · (2x)2 = 8x2. We obtain the following trajectory:

x

y

t = 0
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16. x = 2 + 4t , y = 3 + 2t

solution We find the function by eliminating the parameter. Sincex = 2 + 4t we have t = x−2
4 , hencey = 3 + 2( x−2

4 )

or y = x
2 + 2. Also, since 2 + 4t and 3 + 2t are increasing functions, the direction of motion is the direction of increasing

t . We obtain the following curve:

2 4

(2, 3)

(6, 5)

6
x

−2
−2

−4

−4−6

−6

6

4

2

y

t = 1

t = 0

17. x = πt , y = sin t

solution We find the function by eliminating t . Since x = πt , we have t = x
π . Substituting t = x

π into y = sin t we
get y = sin x

π . We obtain the following curve:

x

y

(4π2,0)

(−2π2,0)

18. x = t2, y = t3

solution From x = t2 we have t = ±x1/2. Hence, y = ±x3/2. Since the functions t2 and t3 are increasing,

there is only one direction of motion, which is the direction of increasing t . Notice that for c(t) = (t2, t3) we have
c(−t) = (t2, −t3) = (x(t), −y(t)). Hence the curve is symmetric with respect to the x axis. We obtain the following
curve:

x

y

19. Match the parametrizations (a)–(d) below with their plots in Figure 14, and draw an arrow indicating the direction of
motion.

2π

xx

yy

1555

(II) (III)(I)

x x

1020

−1

5

yy

(IV)

FIGURE 14

(a) c(t) = (sin t, −t) (b) c(t) = (t2 − 9, 8t − t3)

(c) c(t) = (1 − t, t2 − 9) (d) c(t) = (4t + 2, 5 − 3t)

solution

(a) In the curve c(t) = (sin t, −t) the x-coordinate is varying between −1 and 1 so this curve corresponds to plot IV. As
t increases, the y-coordinate y = −t is decreasing so the direction of motion is downward.
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x

y

−1

2π

−2π

1

(IV) c(t) = (sin t, −t)

(b) The curve c(t) = (t2 − 9, −t3 − 8) intersects the x-axis where y = −t3 − 8 = 0, or t = −2. The x-intercept is
(−5, 0). The y-intercepts are obtained where x = t2 − 9 = 0, or t = ±3. The y-intercepts are (0, −35) and (0, 19). As
t increases from −∞ to 0, x and y decrease, and as t increases from 0 to ∞, x increases and y decreases. We obtain the
following trajectory:

x

y

t = 0, (−9,−8) −5

19

(II)

(c) The curve c(t) = (1 − t, t2 − 9) intersects the y-axis where x = 1 − t = 0, or t = 1. The y-intercept is (0, −8). The
x-intercepts are obtained where t2 − 9 = 0 or t = ±3. These are the points (−2, 0) and (4, 0). Setting t = 1 − x we get

y = t2 − 9 = (1 − x)2 − 9 = x2 − 2x − 8.

As t increases the x coordinate decreases and we obtain the following trajectory:

x

y

−2 4 5

10

(III)

(d) The curve c(t) = (4t + 2, 5 − 3t) is a straight line, since eliminating t in x = 4t + 2 and substituting in y = 5 − 3t

gives y = 5 − 3 · x−2
4 = − 3

4x + 13
2 which is the equation of a line. As t increases, the x coordinate x = 4t + 2 increases

and the y-coordinate y = 5 − 3t decreases. We obtain the following trajectory:

x

y

5

5

(I)
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20. A particle follows the trajectory

x(t) = 1

4
t3 + 2t, y(t) = 20t − t2

with t in seconds and distance in centimeters.

(a) What is the particle’s maximum height?

(b) When does the particle hit the ground and how far from the origin does it land?

solution
(a) To find the maximum height y(t), we set the derivative of y(t) equal to zero and solve:

dy

dt
= d

dt
(20t − t2) = 20 − 2t = 0 ⇒ t = 10.

The maximum height is y(10) = 20 · 10 − 102 = 100 cm.

(b) The object hits the ground when its height is zero. That is, when y(t) = 0. Solving for t we get

20t − t2 = t (20 − t) = 0 ⇒ t = 0, t = 20.

t = 0 is the initial time, so the solution is t = 20.At that time, the object’s x coordinate is x(20) = 1
4 · 203 + 2 · 20 = 2040.

Thus, when it hits the ground, the object is 2040 cm away from the origin.

21. Find an interval of t-values such that c(t) = (cos t, sin t) traces the lower half of the unit circle.

solution For t = π , we have c(π) = (−1, 0). As t increases from π to 2π , the x-coordinate of c(t) increases from
−1 to 1, and the y-coordinate decreases from 0 to −1 (at t = 3π/2) and then returns to 0. Thus, for t in [π, 2π ], the
equation traces the lower part of the circle.

22. Find an interval of t-values such that c(t) = (2t + 1, 4t − 5) parametrizes the segment from (0, −7) to (7, 7).

solution Note that 2t + 1 = 0 at t = −1/2, and 2t + 1 = 7 at t = 3. Also, 4t − 5 takes on the values of −7 and 7 at
t = −1/2 and t = 3. Thus, the interval is [−1/2, 3].
In Exercises 23–38, find parametric equations for the given curve.

23. y = 9 − 4x

solution This is a line through P = (0, 9) with slope m = −4. Using the parametric representation of a line, as given
in Example 3, we obtain c(t) = (t, 9 − 4t).

24. y = 8x2 − 3x

solution Letting t = x yields the parametric representation c(t) = (t, 8t2 − 3t).

25. 4x − y2 = 5

solution We define the parameter t = y. Then, x = 5 + y2

4
= 5 + t2

4
, giving us the parametrization c(t) =(5 + t2

4
, t
)

.

26. x2 + y2 = 49

solution The curve x2 + y2 = 49 is a circle of radius 7 centered at the origin. We use the parametric representation
of a circle to obtain the representation c(t) = (7 cos t, 7 sin t).

27. (x + 9)2 + (y − 4)2 = 49

solution This is a circle of radius 7 centered at (−9, 4). Using the parametric representation of a circle we get
c(t) = (−9 + 7 cos t, 4 + 7 sin t).

28.
(x

5

)2 +
( y

12

)2 = 1

solution This is an ellipse centered at the origin with a = 5 and b = 12. Using the parametric representation of an
ellipse we get c(t) = (5 cos t, 12 sin t) for −π ≤ t ≤ π .

29. Line of slope 8 through (−4, 9)

solution Using the parametric representation of a line given in Example 3, we get the parametrization c(t) = (−4 +
t, 9 + 8t).

30. Line through (2, 5) perpendicular to y = 3x

solution The line perpendicular to y = 3x has slope m = − 1
3 . We use the parametric representation of a line given

in Example 3 to obtain the parametrization c(t) = (2 + t, 5 − 1
3 t).
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31. Line through (3, 1) and (−5, 4)

solution We use the two-point parametrization of a line with P = (a, b) = (3, 1) and Q = (c, d) = (−5, 4). Then
c(t) = (3 − 8t, 1 + 3t) for −∞ < t < ∞.

32. Line through
( 1

3 , 1
6

)
and

(− 7
6 , 5

3

)
solution We use the two-point parametrization of a line with P = (a, b) =

(
1
3 , 1

6

)
and Q = (c, d) =

(
− 7

6 , 5
3

)
.

Then

c(t) =
(

1

3
− 3

2
t,

1

6
+ 3

2
t

)
for −∞ < t < ∞.

33. Segment joining (1, 1) and (2, 3)

solution We use the two-point parametrization of a line with P = (a, b) = (1, 1) and Q = (c, d) = (2, 3). Then
c(t) = (1 + t, 1 + 2t); since we want only the segment joining the two points, we want 0 ≤ t ≤ 1.

34. Segment joining (−3, 0) and (0, 4)

solution We use the two-point parametrization of a line with P = (a, b) = (−3, 0) and Q = (c, d) = (0, 4). Then
c(t) = (−3 + 3t, 4t); since we want only the segment joining the two points, we want 0 ≤ t ≤ 1.

35. Circle of radius 4 with center (3, 9)

solution Substituting (a, b) = (3, 9) and R = 4 in the parametric equation of the circle we get c(t) = (3 + 4 cos t, 9 +
4 sin t).

36. Ellipse of Exercise 28, with its center translated to (7, 4)

solution Since the center is translated by (7, 4), so is every point. Thus the original parametrization becomes c(t) =
(7 + 5 cos t, 4 + 12 sin t) for −π ≤ t ≤ π .

37. y = x2, translated so that the minimum occurs at (−4, −8)

solution We may parametrize y = x2 by (t, t2) for −∞ < t < ∞. The minimum of y = x2 occurs at (0, 0),

so the desired curve is translated by (−4, −8) from y = x2. Thus a parametrization of the desired curve is c(t) =
(−4 + t, −8 + t2).

38. y = cos x translated so that a maximum occurs at (3, 5)

solution A maximum value 1 of y = cos x occurs at x = 0. Hence, the curve y − 4 = cos(x − 3), or y =
4 + cos(x − 3) has a maximum at the point (3, 5). We let t = x − 3, then x = t + 3 and y = 4 + cos t . We obtain the
representation c(t) = (t + 3, 4 + cos t).

In Exercises 39–42, find a parametrization c(t) of the curve satisfying the given condition.

39. y = 3x − 4, c(0) = (2, 2)

solution Let x(t) = t + a and y(t) = 3x − 4 = 3(t + a) − 4. We want x(0) = 2, thus we must use a = 2. Our line
is c(t) = (x(t), y(t)) = (t + 2, 3(t + 2) − 4) = (t + 2, 3t + 2).

40. y = 3x − 4, c(3) = (2, 2)

solution Let x(t) = t + a; since x(3) = 2 we have 2 = 3 + a so that a = −1. Then y = 3x − 4 = 3(t − 1) − 4 =
3t − 7, so that the line is c(t) = (t − 1, 3t − 7) for −∞ < t < ∞.

41. y = x2, c(0) = (3, 9)

solution Let x(t) = t + a and y(t) = x2 = (t + a)2. We want x(0) = 3, thus we must use a = 3. Our curve is

c(t) = (x(t), y(t)) = (t + 3, (t + 3)2) = (t + 3, t2 + 6t + 9).

42. x2 + y2 = 4, c(0) = (1,
√

3)

solution This is a circle of radius 2 centered at the origin, so we are looking for a parametrization of that circle that
starts at a different point. Thus instead of the standard parametrization (2 cos θ, 2 sin θ), θ = 0 must correspond to some
other angle ω. We choose the parametrization (2 cos(θ + ω), 2 sin(θ + ω)) and must determine the value of ω. Now,

x(0) = 1, so 1 = 2 cos(0 + ω) = 2 cos ω and ω = cos−1 1

2
= π

3
or

5π

3

Since

y(0) = √
3, we have

√
3 = 2 sin(0 + ω) = 2 sin ω and ω = sin−1

√
3

2
= π

3
or

2π

3

Comparing these results we see that we must have ω = π

3
so that the parametrization is

c(t) =
(

2 cos
(
θ + π

3

)
, 2 sin

(
θ + π

3

))
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43. Describe c(t) = (sec t, tan t) for 0 ≤ t < π
2 in the form y = f (x). Specify the domain of x.

solution The function x = sec t has period 2π and y = tan t has period π . The graphs of these functions in the
interval −π ≤ t ≤ π , are shown below:

p−p

p
2

p
2

−

y

x
p−p p

2
p
2

−

y

x

x = sec t y = tan t

x = sec t ⇒ x2 = sec2 t

y = tan t ⇒ y2 = tan2 t = sin2 t

cos2 t
= 1 − cos2 t

cos2 t
= sec2 t − 1 = x2 − 1

Hence the graph of the curve is the hyperbola x2 − y2 = 1. The function x = sec t is an even function while y = tan t is
odd. Also x has period 2π and y has period π . It follows that the intervals −π ≤ t < −π

2 , −π
2 < t < π

2 and π
2 < t < π

trace the curve exactly once. The corresponding curve is shown next:

y

x

p
2

− −t = p
2

−t =

p
2

− +t =p
2

+t =

t = 0

(−1, 0) (1, 0)

t = −p

c(t) = (sec t, tan t)

44. Find a parametrization of the right branch (x > 0) of the hyperbola(x

a

)2 −
(y

b

)2 = 1

using the functions cosh t and sinh t . How can you parametrize the branch x < 0?

solution We show first that x = cosh t , y = sinh t parametrizes the hyperbola when a = b = 1: then

x2 − y2 = (cosh t)2 − (sinh t)2 = 1.

using the identity cosh2 − sinh2 = 1. Generalize this parametrization to get a parametrization for the general hyperbola
( x
a )2 − (

y
b
)2 = 1:

x = a cosh t, y = b sinh t.

We must of course check that this parametrization indeed parametrizes the curve, i.e. that x = a cosh t and y = b sin t

satisfy the equation ( x
a )2 − (

y
b
)2 = 1:(x

a

)2 −
(y

b

)2 =
(

a cosh t

a

)2
−
(

b sinh t

b

)2
= (cosh t)2 − (sinh t)2 = 1.

The left branch of the hyperbola is the reflection of the right branch around the line x = 0, so it clearly has the
parametrization

x = −a cosh t, y = b sinh t.

45. The graphs of x(t) and y(t) as functions of t are shown in Figure 15(A). Which of (I)–(III) is the plot of c(t) =
(x(t), y(t))? Explain.

yyyy
x(t)

y(t)
xxxt

(A) (III)(II)(I)

FIGURE 15
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solution As seen in Figure 15(A), the x-coordinate is an increasing function of t , while y(t) is first increasing and
then decreasing. In Figure I, x and y are both increasing or both decreasing (depending on the direction on the curve).
In Figure II, x does not maintain one tendency, rather, it is decreasing and increasing for certain values of t . The plot
c(t) = (x(t), y(t)) is plot III.

46. Which graph, (I) or (II), is the graph of x(t) and which is the graph of y(t) for the parametric curve in Figure 16(A)?

y y

(A)

x

(I)

t

y

(II)

t

FIGURE 16

solution As indicated by Figure 16(A), the y-coordinate is decreasing and then increasing, so plot I is the graph of y.
Figure 16(A) also shows that the x-coordinate is increasing, decreasing and then increasing, so plot II is the graph for x.

47. Sketch c(t) = (t3 − 4t, t2) following the steps in Example 7.

solution We note that x(t) = t3 − 4t is odd and y(t) = t2 is even, hence c(−t) = (x(−t), y(−t)) = (−x(t), y(t)).
It follows that c(−t) is the reflection of c(t) across y-axis. That is, c(−t) and c(t) are symmetric with respect to the y-axis;
thus, it suffices to graph the curve for t ≥ 0. For t = 0, we have c(0) = (0, 0) and the y-coordinate y(t) = t2 tends to ∞
as t → ∞. To analyze the x-coordinate, we graph x(t) = t3 − 4t for t ≥ 0:

x
3 41 2

−4

−2

8

6

4

2

y

x = t3 − 4t

We see that x(t) < 0 and decreasing for 0 < t < 2/
√

3, x(t) < 0 and increasing for 2/
√

3 < t < 2 and x(t) > 0 and
increasing for t > 2. Also x(t) tends to ∞ as t → ∞. Therefore, starting at the origin, the curve first directs to the left of
the y-axis, then at t = 2/

√
3 it turns to the right, always keeping an upward direction. The part of the path for t ≤ 0 is

obtained by reflecting across the y-axis. We also use the points c(0) = (0, 0), c(1) = (−3, 1), c(2) = (0, 4) to obtain the
following graph for c(t):

x

y

t = 0

t = 1

t = 2

(−3, 1)

(0, 4)

y

x

t = 1

t = 0

t = 2

t = −1

t = −2

Graph of c(t) for t ≥ 0. Graph of c(t) for all t .

48. Sketch c(t) = (t2 − 4t, 9 − t2) for −4 ≤ t ≤ 10.

solution The graphs of x(t) = t2 − 4t and y(t) = 9 − t2 for −4 ≤ t ≤ 10 are shown in the following figures:
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42 6 108
x

−2−4

−10

30

20

10

y

−10

−3

10

20

y

x
3 96

x(t) = t2 − 4t y(t) = 9 − t2

The curve starts at c(−4) = (32, −7). For −4 < t < 0, x(t) is decreasing and y(t) is increasing, so the graph turns to the
left and upwards to c(0) = (0, 9). Then for 0 < t < 2, x(t) is decreasing and so is y(t), hence the graph turns to the left
and downwards towards c(2) = (−4, 5).

For 2 < t < 10, x(t) is increasing and y(t) is decreasing, hence the graph turns to the right and downwards, ending at
c(10) = (60, −91). The intercept are the points where t2 − 4t = t (t − 4) = 0 or 9 − t2 = 0, that is t = 0, 4, ±3. These
are the points c(0) = (0, 9), c(4) = (0, −7), c(3) = (−3, 0), c(−3) = (21, 0). These properties lead to the following
path:

x

y

t = 4 t = −4

t = 2, (−4, 5)

t = 3, (−3, 0)

t = 0

t = −3

(21, 0)

(0, −7)

(32, −7)

(0, 9)

In Exercises 49–52, use Eq. (7) to find dy/dx at the given point.

49. (t3, t2 − 1), t = −4

solution By Eq. (7) we have

dy

dx
= y′(t)

x′(t) = (t2 − 1)
′

(t3)
′ = 2t

3t2
= 2

3t

Substituting t = −4 we get

dy

dx
= 2

3t

∣∣∣∣
t=−4

= 2

3 · (−4)
= −1

6
.

50. (2t + 9, 7t − 9), t = 1

solution We find dy
dx

:

dy

dx
= (7t − 9)′

(2t + 9)′ = 7

2
⇒ dy

dx

∣∣∣∣
t=1

= 7

2
.

51. (s−1 − 3s, s3), s = −1

solution Using Eq. (7) we get

dy

dx
= y′(s)

x′(s) = (s3)
′

(s−1 − 3s)
′ = 3s2

−s−2 − 3
= 3s4

−1 − 3s2

Substituting s = −1 we obtain

dy

dx
= 3s4

−1 − 3s2

∣∣∣∣
s=−1

= 3 · (−1)4

−1 − 3 · (−1)2
= −3

4
.
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52. (sin 2θ, cos 3θ), θ = π
6

solution Using Eq. (7) we get

dy

dx
= y′(θ)

x′(θ)
= −3 sin 3θ

2 cos 2θ

Substituting θ = π

6
we get

dy

dx
= −3 sin 3θ

2 cos 2θ

∣∣∣∣
θ=π/6

= −3 sin π
2

2 cos π
3

= −3

2 · 1
2

= −3

In Exercises 53–56, find an equation y = f (x) for the parametric curve and compute dy/dx in two ways: using Eq. (7)
and by differentiating f (x).

53. c(t) = (2t + 1, 1 − 9t)

solution Since x = 2t + 1, we have t = x − 1

2
. Substituting in y = 1 − 9t we have

y = 1 − 9

(
x − 1

2

)
= −9

2
x + 11

2

Differentiating y = −9

2
x + 11

2
gives

dy

dx
= −9

2
. We now find

dy

dx
using Eq. (7):

dy

dx
= y′(t)

x′(t) = (1 − 9t)′
(2t + 1)′ = −9

2

54. c(t) = ( 1
2 t, 1

4 t2 − t
)

solution Since x = 1
2 t we have t = 2x. Substituting in y = 1

4 t2 − t yields

y = 1

4
(2x)2 − 2x = x2 − 2x.

We differentiate y = x2 − 2x:

dy

dx
= 2x − 2

Now, we find dy
dx

using Eq. (7). Thus,

dy

dx
= y′(t)

x′(t) =
(

1
4 t2 − t

)′
(

1
2 t
)′ =

1
2 t − 1

1
2

= t − 2.

Since t = 2x, then this t − 2 is the same as 2x − 2.

55. x = s3, y = s6 + s−3

solution We find y as a function of x:

y = s6 + s−3 =
(
s3
)2 +

(
s3
)−1 = x2 + x−1.

We now differentiate y = x2 + x−1. This gives

dy

dx
= 2x − x−2.

Alternatively, we can use Eq. (7) to obtain the following derivative:

dy

dx
= y′(s)

x′(s) =
(
s6 + s−3

)′
(
s3
)′ = 6s5 − 3s−4

3s2
= 2s3 − s−6.

Hence, since x = s3,

dy

dx
= 2x − x−2.
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56. x = cos θ , y = cos θ + sin2 θ

solution To find y as a function of x, we first use the trigonometric identity sin2θ = 1 − cos2θ to write

y = cos θ + 1 − cos2θ.

We substitute x = cos θ to obtain y = x + 1 − x2. Differentiating this function yields

dy

dx
= 1 − 2x.

Alternatively, we can compute dy
dx

using Eq. (7). That is,

dy

dx
= y′ (θ)

x′ (θ)
=
(

cos θ + sin2θ
)′

(cos θ)′ = − sin θ + 2 sin θ cos θ

− sin θ
= 1 − 2 cos θ.

Hence, since x = cos θ ,

dy

dx
= 1 − 2x.

57. Find the points on the curve c(t) = (3t2 − 2t, t3 − 6t) where the tangent line has slope 3.

solution We solve

dy

dx
= 3t2 − 6

6t − 2
= 3

or 3t2 − 6 = 18t − 6, or t2 − 6t = 0, so the slope is 3 at t = 0, 6 and the points are (0, 0) and (96, 180)

58. Find the equation of the tangent line to the cycloid generated by a circle of radius 4 at t = π
2 .

solution The cycloid generated by a circle of radius 4 can be parametrized by

c(t) = (4t − 4 sin t, 4 − 4 cos t)

Then we compute

dy

dx

∣∣∣∣
t=π/2

= 4 sin t

4 − 4 cos t

∣∣∣∣
t=π/2

= 4

4
= 1

so that the slope of the tangent line is 1 and the equation of the tangent line is

y −
(

4 − 4 cos
π

2

)
= 1 ·

(
x −

(
4 · π

2
− 4 sin

π

2

))
or y = x + 8 − 2π

In Exercises 59–62, let c(t) = (t2 − 9, t2 − 8t) (see Figure 17).

60

40

20

604020
x

y

FIGURE 17 Plot of c(t) = (t2 − 9, t2 − 8t).

59. Draw an arrow indicating the direction of motion, and determine the interval of t-values corresponding to the portion
of the curve in each of the four quadrants.

solution We plot the functions x(t) = t2 − 9 and y(t) = t2 − 8t :

t

x

3−3 t

y

1 2 3 4 5 6 7 8 9−3−2−1

x = t2 − 9 y = t2 − 8t
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We note carefully where each of these graphs are positive or negative, increasing or decreasing. In particular, x(t) is
decreasing for t < 0, increasing for t > 0, positive for |t | > 3, and negative for |t | < 3. Likewise, y(t) is decreasing for
t < 4, increasing for t > 4, positive for t > 8 or t < 0, and negative for 0 < t < 8. We now draw arrows on the path
following the decreasing/increasing behavior of the coordinates as indicated above. We obtain:

x

y

20

t = 0
(−9,0)

t = 8
(55,0)

t = 3
(0,−15)

t = −3 (0,33)

t = 4 (7,−16)

40 60−20

−20

20

40

60

This plot also shows that:

• The graph is in the first quadrant for t < −3 or t > 8.
• The graph is in the second quadrant for −3 < t < 0.
• The graph is in the third quadrant for 0 < t < 3.
• The graph is in the fourth quadrant for 3 < t < 8.

60. Find the equation of the tangent line at t = 4.

solution Using the formula for the slope m of the tangent line we have:

m = dy

dx

∣∣∣∣
t=4

=
(
t2 − 8t

)′
(
t2 − 9

)′ ∣∣∣∣
t=4

= 2t − 8

2t
|t=4 = 1 − 4

t
|t=4 = 0.

Since the slope is zero, the tangent line is horizontal. The y-coordinate corresponding to t = 4 is y = 42 − 8 · 4 = −16.
Hence the equation of the tangent line is y = −16.

61. Find the points where the tangent has slope 1
2 .

solution The slope of the tangent at t is

dy

dx
=
(
t2 − 8t

)′
(
t2 − 9

)′ = 2t − 8

2t
= 1 − 4

t

The point where the tangent has slope 1
2 corresponds to the value of t that satisfies

dy

dx
= 1 − 4

t
= 1

2
⇒ 4

t
= 1

2
⇒ t = 8.

We substitute t = 8 in x(t) = t2 − 9 and y(t) = t2 − 8t to obtain the following point:

x(8) = 82 − 9 = 55

y(8) = 82 − 8 · 8 = 0
⇒ (55, 0)

62. Find the points where the tangent is horizontal or vertical.

solution In Exercise 61 we found that the slope of the tangent at t is

dy

dx
= 1 − 4

t
= t − 4

t

The tangent is horizontal where its slope is zero. We set the slope equal to zero and solve for t . This gives

t − 4

t
= 0 ⇒ t = 4.

The corresponding point is

(x(4), y(4)) = (42 − 9, 42 − 8 · 4) = (7, −16).

The tangent is vertical where it has infinite slope; that is, at t = 0. The corresponding point is

(x(0), y(0)) = (02 − 9, 02 − 8 · 0) = (−9, 0).
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63. Let A and B be the points where the ray of angle θ intersects the two concentric circles of radii r < R centered at
the origin (Figure 18). Let P be the point of intersection of the horizontal line through A and the vertical line through B.
Express the coordinates of P as a function of θ and describe the curve traced by P for 0 ≤ θ ≤ 2π .

x

y

B

P

Rr

A

FIGURE 18

solution We use the parametric representation of a circle to determine the coordinates of the points A and B. That is,

A = (r cos θ, r sin θ), B = (R cos θ, R sin θ)

The coordinates of P are therefore

P = (R cos θ, r sin θ)

In order to identify the curve traced by P , we notice that the x and y coordinates of P satisfy x
R

= cos θ and y
r = sin θ .

Hence ( x

R

)2 +
(y

r

)2 = cos2θ + sin2θ = 1.

The equation ( x

R

)2 +
(y

r

)2 = 1

is the equation of ellipse. Hence, the coordinates of P , (R cos θ, r sin θ) describe an ellipse for 0 ≤ θ ≤ 2π .

64. A 10-ft ladder slides down a wall as its bottom B is pulled away from the wall (Figure 19). Using the angle θ as
parameter, find the parametric equations for the path followed by (a) the top of the ladder A, (b) the bottom of the ladder
B, and (c) the point P located 4 ft from the top of the ladder. Show that P describes an ellipse.

y

B

P = (x, y)

6

4

q x

A

FIGURE 19

solution

(a) We define the xy-coordinate system as shown in the figure:

y

B0

10

q x

A
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As the ladder slides down the wall, the x-coordinate of A is always zero and the y-coordinate is y = 10 sin θ . The
parametric equations for the path followed by A are thus

x = 0, y = 10 sin θ, θ is between π
2 and 0.

The path described by A is the segment [0, 10] on the y-axis.

y

0

10

x

(b) As the ladder slides down the wall, the y-coordinate of B is always zero and the x-coordinate is x = 10 cos θ . The
parametric equations for the path followed by B are therefore

x = 10 cos θ, y = 0, θ is between π
2 and 0.

The path is the segment [0, 10] on the x-axis.

y

0 10
x

(c) The x and y coordinates of P are x = 4 cos θ , y = 6 sin θ . The path followed by P has the following parametrization:

c(θ) = (4 cos θ, 6 sin θ), θ is between π
2 and 0.

y

0

6

4

x

x

y

P(x, y)

q

q

As shown in Example 4, the corresponding path is a part of an ellipse. Since θ is varying between π
2 and 0, we obtain the

part of the ellipse in the first quadrant.

y

0 4

6

x
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In Exercises 65–68, refer to the Bézier curve defined by Eqs. (8) and (9).

65. Show that the Bézier curve with control points

P0 = (1, 4), P1 = (3, 12), P2 = (6, 15), P3 = (7, 4)

has parametrization

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3)

Verify that the slope at t = 0 is equal to the slope of the segment P0P1.

solution For the given Bézier curve we have a0 = 1, a1 = 3, a2 = 6, a3 = 7, and b0 = 4, b1 = 12, b2 = 15, b3 = 4.
Substituting these values in Eq. (8)–(9) and simplifying gives

x(t) = (1 − t)3 + 9t (1 − t)2 + 18t2(1 − t) + 7t3

= 1 − 3t + 3t2 − t3 + 9t (1 − 2t + t2) + 18t2 − 18t3 + 7t3

= 1 − 3t + 3t2 − t3 + 9t − 18t2 + 9t3 + 18t2 − 18t3 + 7t3

= −3t3 + 3t2 + 6t + 1

y(t) = 4(1 − t)3 + 36t (1 − t)2 + 45t2(1 − t) + 4t3

= 4(1 − 3t + 3t2 − t3) + 36t (1 − 2t + t2) + 45t2 − 45t3 + 4t3

= 4 − 12t + 12t2 − 4t3 + 36t − 72t2 + 36t3 + 45t2 − 45t3 + 4t3

= 4 + 24t − 15t2 − 9t3

Then

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3), 0 ≤ t ≤ 1.

We find the slope at t = 0. Using the formula for slope of the tangent line we get

dy

dx
= (4 + 24t − 15t2 − 9t3)′

(1 + 6t + 3t2 − 3t3)′ = 24 − 30t − 27t2

6 + 6t − 9t2
⇒ dy

dx

∣∣∣∣
t=0

= 24

6
= 4.

The slope of the segment P0P1 is the slope of the line determined by the points P0 = (1, 4) and P1 = (3, 12). That is,
12−4
3−1 = 8

2 = 4. We see that the slope of the tangent line at t = 0 is equal to the slope of the segment P0P1, as expected.

66. Find an equation of the tangent line to the Bézier curve in Exercise 65 at t = 1
3 .

solution We have

dy

dx
= y(t)′

x(t)′ = 24 − 30t − 27t2

66t − 9t2

so that at t = 1
3 ,

dy

dx

∣∣∣∣
t=1/3

= 24 − 30t − 27t2

6 + 6t − 9t2

∣∣∣∣
t=1/3

= 11

7

and

x

(
1

3

)
= 29

9
, y

(
1

3

)
= 10

Thus the tangent line is

y − 10 = 11

7

(
x − 29

9

)
or y = 11

7
x + 311

63

67. Find and plot the Bézier curve c(t) passing through the control points

P0 = (3, 2), P1 = (0, 2), P2 = (5, 4), P3 = (2, 4)

solution Setting a0 = 3, a1 = 0, a2 = 5, a3 = 2, and b0 = 2, b1 = 2, b2 = 4, b3 = 4 into Eq. (8)–(9) and
simplifying gives

x(t) = 3(1 − t)3 + 0 + 15t2(1 − t) + 2t3

= 3(1 − 3t + 3t2 − t3) + 15t2 − 15t3 + 2t3 = 3 − 9t + 24t2 − 16t3
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y(t) = 2(1 − t)3 + 6t (1 − t)2 + 12t2(1 − t) + 4t3

= 2(1 − 3t + 3t2 − t3) + 6t (1 − 2t + t2) + 12t2 − 12t3 + 4t3

= 2 − 6t + 6t2 − 2t3 + 6t − 12t2 + 6t3 + 12t2 − 12t3 + 4t3 = 2 + 6t2 − 4t3

We obtain the following equation

c(t) = (3 − 9t + 24t2 − 16t3, 2 + 6t2 − 4t3), 0 ≤ t ≤ 1.

The graph of the Bézier curve is shown in the following figure:

x

y

1 2 3

1

2

3

4

68. Show that a cubic Bézier curve is tangent to the segment P2P3 at P3.

solution The equations of the cubic Bézier curve are

x(t) = a0(1 − t)3 + 3a1t (1 − t)2 + 3a2t2(1 − t) + a3t3

y(t) = b0(1 − t)3 + 3b1t (1 − t)2 + 3b2t2(1 − t) + b3t3

We use the formula for the slope of the tangent line to find the slope of the tangent line at P3. We obtain

dy

dx
= y′(t)

x′(t) = −3b0(1 − t)2 + 3b1((1 − t)2 − 2t (1 − t)) + 3b2(2t (1 − t) − t2) + 3b3t2

−3a0(1 − t)2 + 3a1((1 − t)2 − 2t (1 − t)) + 3a2(2t (1 − t) − t2) + 3a3t2
(1)

The slope of the tangent line at P3 is obtained by setting t = 1 in (1). That is,

m1 = 0 + 0 − 3b2 + 3b3

0 + 0 − 3a2 + 3a3
= b3 − b2

a3 − a2
(2)

We compute the slope of the segment P2P3 for P2 = (a2, b2) and P3 = (a3, b3). We get

m2 = b3 − b2

a3 − a2

Since the two slopes are equal, we conclude that the tangent line to the curve at the point P3 is the segment P2P3.

69. A bullet fired from a gun follows the trajectory

x = at, y = bt − 16t2 (a, b > 0)

Show that the bullet leaves the gun at an angle θ = tan−1 ( b
a

)
and lands at a distance ab/16 from the origin.

solution The height of the bullet equals the value of the y-coordinate. When the bullet leaves the gun, y(t) =
t (b − 16t) = 0. The solutions to this equation are t = 0 and t = b

16 , with t = 0 corresponding to the moment the bullet
leaves the gun. We find the slope m of the tangent line at t = 0:

dy

dx
= y′(t)

x′(t) = b − 32t

a
⇒ m = b − 32t

a

∣∣∣∣
t=0

= b

a

It follows that tan θ = b
a or θ = tan−1

(
b
a

)
. The bullet lands at t = b

16 . We find the distance of the bullet from the origin

at this time, by substituting t = b
16 in x(t) = at . This gives

x

(
b

16

)
= ab

16
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70. Plot c(t) = (t3 − 4t, t4 − 12t2 + 48) for −3 ≤ t ≤ 3. Find the points where the tangent line is horizontal
or vertical.

solution The graph of c(t) = (t3 − 4t, t4 − 12t2 + 48), −3 ≤ t ≤ 3 is shown in the following figure:

5 10 15
x

−5

20

10

−10−15

60

50

40

30

y

t = 3, (15, 21)t = −3
(−15, 21)

t = 0
(0, 48)

t = −1.15
(3.1, 33.8)

t = 1.15
(−3.1, 33.8)

t = 2.45
(4.9, 12)

t = −2.45
(−4.9, 12)

We find the slope of the tangent line at t :

dy

dx
= y′(t)

x′(x)
= (t4 − 12t2 + 48)

′

(t3 − 4t)
′ = 4t3 − 24t

3t2 − 4
(1)

The tangent line is horizontal where dy
dx

= 0. That is,

4t3 − 24t

3t2 − 4
= 0 ⇒ 4t (t2 − 6) = 0 ⇒ t = 0, t = −√

6, t = √
6.

We find the corresponding points by substituting these values of t in c(t). We obtain:

c(0) = (0, 48), c(−√
6) ≈ (−4.9, 12), c(

√
6) ≈ (4.9, 12).

The tangent line is vertical where the slope in (1) is infinite, that is, where 3t2 − 4 = 0 or t = ± 2√
3

≈ ±1.15. We find

the points by setting t = ± 2√
3

in c(t). We get

c

(
2√
3

)
≈ (−3.1, 33.8), c

(
− 2√

3

)
≈ (3.1, 33.8).

71. Plot the astroid x = cos3 θ , y = sin3 θ and find the equation of the tangent line at θ = π
3 .

solution The graph of the astroid x = cos3 θ , y = sin3 θ is shown in the following figure:

x

y

=     (0, 1)π 
2

   =      (0, −1)3π 
2

   = 0
(1, 0)

   = π
(−1, 0)

The slope of the tangent line at θ = π
3 is

m = dy

dx

∣∣∣∣
θ=π/3

= (sin3 θ)′
(cos3 θ)′

∣∣∣∣
θ=π/3

= 3 sin2 θ cos θ

3 cos2 θ(− sin θ)

∣∣∣∣
θ=π/3

= − sin θ

cos θ

∣∣∣∣
θ=π/3

= − tan θ

∣∣∣∣
π/3

= −√
3

We find the point of tangency: (
x
(π

3

)
, y
(π

3

))
=
(

cos3 π

3
, sin3 π

3

)
=
(

1

8
,

3
√

3

8

)
The equation of the tangent line at θ = π

3 is, thus,

y − 3
√

3

8
= −√

3

(
x − 1

8

)
⇒ y = −√

3x +
√

3

2
72. Find the equation of the tangent line at t = π

4 to the cycloid generated by the unit circle with parametric equation (5).

solution We find the equation of the tangent line at t = π
4 to the cycloid x = t − sin t , y = 1 − cos t . We first find

the derivative dy
dx

:
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dy

dx
= y′(t)

x′(t) = (1 − cos t)′
(t − sin t)′ = sin t

1 − cos t

The slope of the tangent line at t = π
4 is therefore:

m = dy

dx

∣∣∣∣
t=π/4

= sin π
4

1 − cos π
4

=
√

2
2

1 −
√

2
2

= 1√
2 − 1

We find the point of tangency:(
x
(π

4

)
, y
(π

4

))
=
(π

4
− sin

π

4
, 1 − cos

π

4

)
=
(

π

4
−

√
2

2
, 1 −

√
2

2

)
The equation of the tangent line is, thus,

y −
(

1 −
√

2

2

)
= 1√

2 − 1

(
x −

(
π

4
−

√
2

2

))
⇒ y = 1√

2 − 1
x +

(
2 −

π
4√

2 − 1

)
73. Find the points with horizontal tangent line on the cycloid with parametric equation (5).

solution The parametric equations of the cycloid are

x = t − sin t, y = 1 − cos t

We find the slope of the tangent line at t :

dy

dx
= (1 − cos t)′

(t − sin t)′ = sin t

1 − cos t

The tangent line is horizontal where it has slope zero. That is,

dy

dx
= sin t

1 − cos t
= 0 ⇒ sin t = 0

cos t �= 1
⇒ t = (2k − 1)π, k = 0, ±1, ±2, . . .

We find the coordinates of the points with horizontal tangent line, by substituting t = (2k − 1)π in x(t) and y(t). This
gives

x = (2k − 1)π − sin(2k − 1)π = (2k − 1)π

y = 1 − cos((2k − 1)π) = 1 − (−1) = 2

The required points are

((2k − 1)π, 2), k = 0, ±1, ±2, . . .

74. Property of the Cycloid Prove that the tangent line at a point P on the cycloid always passes through the top point
on the rolling circle as indicated in Figure 20. Assume the generating circle of the cycloid has radius 1.

Tangent line

Cycloid

y

x

FIGURE 20

solution The definition of the cycloid is such that at time t , the top of the circle has coordinates Q = (t, 2) (since at
time t = 2π the circle has rotated exactly once, and its circumference is 2π ). Let L be the line through P and Q. To show
that L is tangent to the cycloid at P it suffices to show that the slope of L equals the slope of the tangent at P . Recall that
the cycloid is parametrized by c(t) = (t − sin t, 1 − cos t). Then the slope of L is

2 − (1 − cos t)

t − (t − sin t)
= 1 + cos t

sin t

and the slope of the tangent line is

y′(t)
x′(t) = (1 − cos t)′

(t − sin t)′ = sin t

1 − cos t
= sin t (1 + cos t)

1 − cos2 t
= sin t (1 + cos t)

sin2 t
= 1 + cos t

sin t

and the two are equal.
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75. A curtate cycloid (Figure 21) is the curve traced by a point at a distance h from the center of a circle of radius R

rolling along the x-axis where h < R. Show that this curve has parametric equations x = Rt − h sin t , y = R − h cos t .

y

h
R

x
4π2π

FIGURE 21 Curtate cycloid.

solution Let P be a point at a distance h from the center C of the circle. Assume that at t = 0, the line of CP is
passing through the origin. When the circle rolls a distance Rt along the x-axis, the length of the arc ŜQ (see figure) is
also Rt and the angle � SCQ has radian measure t . We compute the coordinates x and y of P .

0

CC

R

S

Rt

A
P

h

t

Q

x = Rt − PA = Rt − h sin(π − t) = Rt − h sin t

y = R + AC = R + h cos(π − t) = R − h cos t

We obtain the following parametrization:

x = Rt − h sin t, y = R − h cos t.

76. Use a computer algebra system to explore what happens when h > R in the parametric equations of Exercise
75. Describe the result.

solution Look first at the parametric equations x = −h sin t , y = −h cos t . These describe a circle of radius h. See
for instance the graphs below obtained for h = 3 and h = 5.

2 4 6
x

−2
−2

−4

−4−6

−6

6

4

2

y

c(t) = (−h*sin(t), −h*cos(t)) h = 3, 5

Adding R to the y coordinate to obtain the parametric equations x = −h sin t , y = R − h cos t , yields a circle with its
center moved up by R units:

2 4 6
x

−2
−2

−4

−4−6

−6

10

4

6

8

2

y

c(t) = (−h*sin(t), R−h*cos(t)) R = 1, 5 h = 5
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Now, we add Rt to the x coordinate to obtain the given parametric equation; the curve becomes a spring. The figure below
shows the graphs obtained for R = 1 and various values of h. We see the inner loop formed for h > R.

2 4 6 8 10
x

−8 −6 −4 −2
−2

−4

−10

−6

4

6

8

2

y

77. Show that the line of slope t through (−1, 0) intersects the unit circle in the point with coordinates

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
10

Conclude that these equations parametrize the unit circle with the point (−1, 0) excluded (Figure 22). Show further that
t = y/(x + 1).

(x, y)

(−1, 0)

Slope t

y

x

FIGURE 22 Unit circle.

solution The equation of the line of slope t through (−1, 0) is y = t (x + 1). The equation of the unit circle is

x2 + y2 = 1. Hence, the line intersects the unit circle at the points (x, y) that satisfy the equations:

y = t (x + 1) (1)

x2 + y2 = 1 (2)

Substituting y from equation (1) into equation (2) and solving for x we obtain

x2 + t2(x + 1)2 = 1

x2 + t2x2 + 2t2x + t2 = 1

(1 + t2)x2 + 2t2x + (t2 − 1) = 0

This gives

x1,2 = −2t2 ±
√

4t4 − 4(t2 + 1)(t2 − 1)

2(1 + t2)
= −2t2 ± 2

2(1 + t2)
= ±1 − t2

1 + t2

So x1 = −1 and x2 = 1 − t2

t2 + 1
. The solution x = −1 corresponds to the point (−1, 0). We are interested in the second

point of intersection that is varying as t varies. Hence the appropriate solution is

x = 1 − t2

t2 + 1

We find the y-coordinate by substituting x in equation (1). This gives

y = t (x + 1) = t

(
1 − t2

t2 + 1
+ 1

)
= t · 1 − t2 + t2 + 1

t2 + 1
= 2t

t2 + 1

We conclude that the line and the unit circle intersect, besides at (−1, 0), at the point with the following coordinates:

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
(3)
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Since these points determine all the points on the unit circle except for (−1, 0) and no other points, the equations in (3)
parametrize the unit circle with the point (−1, 0) excluded.

We show that t = y

x + 1
. Using (3) we have

y

x + 1
=

2t
t2+1

1−t2

t2+1
+ 1

=
2t

t2+1
1−t2+t2+1

t2+1

=
2t

t2+1
2

t2+1

= 2t

2
= t.

78. The folium of Descartes is the curve with equation x3 + y3 = 3axy, where a �= 0 is a constant (Figure 23).

(a) Show that the line y = tx intersects the folium at the origin and at one other point P for all t �= −1, 0. Express the
coordinates of P in terms of t to obtain a parametrization of the folium. Indicate the direction of the parametrization on
the graph.
(b) Describe the interval of t-values parametrizing the parts of the curve in quadrants I, II, and IV. Note that t = −1 is a
point of discontinuity of the parametrization.
(c) Calculate dy/dx as a function of t and find the points with horizontal or vertical tangent.

2−2

−2

x

2
II I

III IV

y

FIGURE 23 Folium x3 + y3 = 3axy.

solution
(a) We find the points where the line y = tx (t �= −1, 0) and the folium intersect, by solving the following equations:

y = tx (1)

x3 + y3 = 3axy (2)

Substituting y from (1) in (2) and solving for x we get

x3 + t3x3 = 3axtx

(1 + t3)x3 − 3atx2 = 0

x2(x(1 + t3) − 3at) = 0 ⇒ x1 = 0, x2 = 3at

1 + t3

Substituting in (1) we find the corresponding y-coordinates. That is,

y1 = t · 0 = 0, y2 = t · 3at

1 + t3
= 3at2

1 + t3

We conclude that the line y = tx, t �= 0, −1 intersects the folium in a unique point P besides the origin. The coordinates
of P are:

x = 3at

1 + t3
, y = 3at2

1 + t3
, t �= 0, −1

The coordinates of P determine a parametrization for the folium. We add the origin so t = 0 must be included in the
interval of t . We get

c(t) =
(

3at

1 + t3
,

3at2

1 + t3

)
, t �= −1

To indicate the direction on the curve (for a > 0), we first consider the following limits:

lim
t→−1− x(t) = ∞ lim

t→−1− y(t) = −∞

lim
t→−∞ x(t) = lim

t→∞ x(t) = 0 lim
t→−∞ y(t) = lim

t→∞ y(t) = 0

lim
t→−1+ x(t) = −∞ lim

t→−1+ y(t) = ∞

lim
t→0

x(t) = 0 lim
t→0

y(t) = 0
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These limits determine the directions of the two parts of the folium in the second and fourth quadrant. The loop in the
first quadrant, corresponds to the values 0 ≤ t < ∞, and it is directed from c(1) = ( 3a

2 , 3a
2 ) to c(2) = ( 2a

3 , 4a
3 ) where

t = 1 and t = 2 are two chosen values in the interval 0 ≤ t < ∞. The following graph shows the directed folium:

y

x
t = 0

t = ∞
t = −∞

t = −1−

t = −1+

0 ≤ t < ∞
−1< t < 0

−∞ < t < −1

(b) The limits computed in part (a) indicate that the parts of the curve in the second and fourth quadrants correspond
to the values −1 < t < 0 and −∞ < t < −1 respectively. The loop in the first quadrant corresponds to the remaining
interval 0 ≤ t < ∞.
(c) We find the derivative dy

dx
, using the Formula for the Slope of the Tangent Line. We get

dy

dx
= y′(t)

x′(t) =
(

3at2

1+t3

)′
(

3at
1+t3

)′ =
6at (1+t3)−3at2·3t2

(1+t3)
2

3a(1+t3)−3at ·3t2

(1+t3)
2

= 6at − 3at4

3a − 6at3
= t (2 − t3)

1 − 2t3

Horizontal tangent occurs when dy
dx

= 0. That is,

t (2 − t3)

1 − 2t3
= 0 ⇒ t (2 − t3) = 0, 1 − 2t3 �= 0 ⇒ t = 0, t = 3√

2.

The corresponding points are:

c(0) = (x(0), y(0)) = (0, 0)

c
(

3√
2
)

=
(
x
(

3√
2
)

, y
(

3√
2
))

=
(

3a
3√2

1 + 2
,

3a
3√4

1 + 2

)
=
(
a

3√
2, a

3√
4
)

Vertical tangent line occurs when dy
dx

is infinite. That is,

1 − 2t3 = 0 ⇒ t = 1
3√2

The corresponding point is

c

(
1

3√2

)
=
(

x

(
1

3√2

)
, y

(
1

3√2

))
=
⎛⎝ 3a

3√2

1 + 1
2

,

3a
3√4

1 + 1
2

⎞⎠ =
(

3√
4a,

3√
2a
)

.

79. Use the results of Exercise 78 to show that the asymptote of the folium is the line x + y = −a. Hint: Show that
lim

t→−1
(x + y) = −a.

solution We must show that as x → ∞ or x → −∞ the graph of the folium is getting arbitrarily close to the line

x + y = −a, and the derivative dy
dx

is approaching the slope −1 of the line.
In Exercise 78 we showed that x → ∞ when t → (−1−) and x → −∞ when t → (−1+). We first show that the graph

is approaching the line x + y = −a as x → ∞ or x → −∞, by showing that lim
t→−1− x + y = lim

t→−1+ x + y = −a.

For x(t) = 3at

1 + t3
, y(t) = 3at2

1 + t3
, a > 0, calculated in Exercise 78, we obtain using L’Hôpital’s Rule:

lim
t→−1−(x + y) = lim

t→−1−
3at + 3at2

1 + t3
= lim

t→−1−
3a + 6at

3t2
= 3a − 6a

3
= −a

lim
t→−1+(x + y) = lim

t→−1+
3at + 3at2

1 + t3
= lim

t→−1+
3a + 6at

3t2
= 3a − 6a

3
= −a

We now show that
dy

dx
is approaching −1 as t → −1− and as t → −1+. We use

dy

dx
= 6at − 3at4

3a − 6at3
computed in Exercise

78 to obtain

lim
t→−1−

dy

dx
= lim

t→−1−
6at − 3at4

3a − 6at3
= −9a

9a
= −1
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lim
t→−1+

dy

dx
= lim

t→−1+
6at − 3at4

3a − 6at3
= −9a

9a
= −1

We conclude that the line x + y = −a is an asymptote of the folium as x → ∞ and as x → −∞.

80. Find a parametrization of x2n+1 + y2n+1 = axnyn, where a and n are constants.

solution Following the method in Exercise 78, we first find the coordinates of the point P where the curve and the
line y = tx intersect. We solve the following equations:

y = tx

x2n+1 + y2n+1 = axnyn

Substituting y = tx in the second equation and solving for x yields

x2n+1 + t2n+1x2n+1 = axn · tnxn

(1 + t2n+1)x2n+1 − atnx2n = 0

x2n((1 + t2n+1)x − atn) = 0 ⇒ x = 0, x = atn

1 + t2n+1

We assume that t �= −1 (so 1 + t2n+1 �= 0) and obtain one solution besides the origin. The corresponding y coordinates
are

y = tx = t · atn

1 + t2n+1
= atn+1

1 + t2n+1

Hence, the points x = atn

1 + t2n+1
, y = atn+1

1 + t2n+1
, t �= −1, are exactly the points on the curve. We obtain the following

parametrization:

x = atn

1 + t2n+1
, y = atn+1

1 + t2n+1
, t �= −1.

81. Second Derivative for a Parametrized Curve Given a parametrized curve c(t) = (x(t), y(t)), show that

d

dt

( dy

dx

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

Use this to prove the formula

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)3
11

solution By the formula for the slope of the tangent line we have

dy

dx
= y′(t)

x′(t)

Differentiating with respect to t , using the Quotient Rule, gives

d

dt

(
dy

dx

)
= d

dt

(
y′(t)
x′(t)

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

By the Chain Rule we have

d2y

dx2
= d

dx

(
dy

dx

)
= d

dt

(
dy

dx

)
· dt

dx

Substituting into the above equation

(
and using

dt

dx
= 1

dx/dt
= 1

x′(t)

)
gives

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2
· 1

x′(t) = x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3
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82. The second derivative of y = x2 is dy2/d2x = 2. Verify that Eq. (11) applied to c(t) = (t, t2) yields dy2/d2x = 2.
In fact, any parametrization may be used. Check that c(t) = (t3, t6) and c(t) = (tan t, tan2 t) also yield dy2/d2x = 2.

solution For the parametrization c(t) = (t, t2), we have

x′(t) = 1, x′′(t) = 0, y′(t) = 2t, y′′(t) = 2

so that indeed

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

= 1 · 2 − 2t · 0

13
= 2

For c(t) = (t3, t6), we have

x′(t) = 3t2, x′′(t) = 6t, y′(t) = 6t5, y′′(t) = 30t4

so that again

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

= 3t2 · 30t4 − 6t5 · 6t

(3t2)3
= 54t6

27t6
= 2

Finally, for c(t) = (tan t, tan2 t),

x′(t) = sec2 t, x′′(t) = 2 tan t sec2 t, y′(t) = 2 tan t sec2 t, y′′(t) = 6 sec4 t − 4 sec2 t

and

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

= sec2 t (6 sec4 t − 4 sec2 t) − 2 tan t sec2 t (2 tan t sec2 t)

sec6 t

= 6 sec6 t − 4 sec4 t − 4 sec4 t tan2 t

sec6 t
= 6 sec6 t − 4 sec4 t (1 − (1 + sec2 t)))

sec6 t

= 2 sec6 t

sec6 t
= 2

In Exercises 83–86, use Eq. (11) to find d2y/dx2.

83. x = t3 + t2, y = 7t2 − 4, t = 2

solution We find the first and second derivatives of x(t) and y(t):

x′(t) = 3t2 + 2t ⇒ x′(2) = 3 · 22 + 2 · 2 = 16

x′′(t) = 6t + 2 ⇒ x′′(2) = 6 · 2 + 2 = 14

y′(t) = 14t ⇒ y′(2) = 14 · 2 = 28

y′′(t) = 14 ⇒ y′′(2) = 14

Using Eq. (11) we get

d2y

dx2

∣∣∣∣
t=2

= x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

∣∣∣∣
t=2

= 16 · 14 − 28 · 14

163
= −21

512

84. x = s−1 + s, y = 4 − s−2, s = 1

solution Since x′(s) = −s−2 + 1 = 1 − 1

s2
, we have x′(1) = 0. Hence, Eq. (11) cannot be used to compute

d2y

dx2
at

s = 1.

85. x = 8t + 9, y = 1 − 4t , t = −3

solution We compute the first and second derivatives of x(t) and y(t):

x′(t) = 8 ⇒ x′(−3) = 8

x′′(t) = 0 ⇒ x′′(−3) = 0

y′(t) = −4 ⇒ y′(−3) = −4

y′′(t) = 0 ⇒ y′′(−3) = 0
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Using Eq. (11) we get

d2y

dx2

∣∣∣∣
t=−3

= x′(−3)y′′(−3) − y′(−3)x′′(−3)

x′(−3)3
= 8 · 0 − (−4) · 0

83
= 0

86. x = cos θ , y = sin θ , θ = π
4

solution We find the first and second derivatives of x(θ) and y(θ):

x′(θ) = − sin θ ⇒ x′ (π

4

)
= −

√
2

2

x′′(θ) = − cos θ ⇒ x′′ (π

4

)
= −

√
2

2

y′(θ) = cos θ ⇒ y′ (π

4

)
=

√
2

2

y′′(θ) = − sin θ ⇒ y′′ (π

4

)
= −

√
2

2

Using Eq. (11) we get

d2y

dx2

∣∣∣∣
θ= π

4

= x′ (π
4

)
y′′ (π

4

)− y′ (π
4

)
x′′ (π

4

)(
x′ (π

4

))3 =
(
−

√
2

2

) (
−

√
2

2

)
−

√
2

2 ·
(
−

√
2

2

)
(
−

√
2

2

)3
= −2

√
2

87. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t3 − 4t) is concave up.

solution The curve is concave up where
d2y

dx2
> 0. Thus,

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

> 0 (1)

We compute the first and second derivatives:

x′(t) = 2t, x′′(t) = 2

y′(t) = 3t2 − 4, y′′(t) = 6t

Substituting in (1) and solving for t gives

12t2 − (6t2 − 8)

8t3
= 6t2 + 8

8t3

Since 6t2 + 8 > 0 for all t , the quotient is positive if 8t3 > 0. We conclude that the curve is concave up for t > 0.

88. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t4 − 4t) is concave up.

solution The curve is concave up where
d2y

dx2
> 0. That is,

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

> 0 (1)

We compute the first and second derivatives:

x′(t) = 2t, x′′(t) = 2

y′(t) = 4t3 − 4, y′′(t) = 12t2

Substituting in (1) and solving for t gives

24t3 − (8t3 − 8)

8t3
= 16t3 + 8

8t3
= 1 + 1

2t3

This is clearly positive for t > 0. For t < 0, we want 1 + 1

2t3
> 0, which means

1

2t3
> −1, so 2t3 < −1 (by taking the

reciprocal of both sides), so t < − 1
3√2

. Thus, we see that our curve is concave up for t < − 1
3√2

and for t > 0.
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89. Area Under a Parametrized Curve Let c(t) = (x(t), y(t)), where y(t) > 0 and x′(t) > 0 (Figure 24). Show that
the area A under c(t) for t0 ≤ t ≤ t1 is

A =
∫ t1

t0

y(t)x′(t) dt 12

Hint: Because it is increasing, the function x(t) has an inverse t = g(x) and c(t) is the graph of y = y(g(x)). Apply the

change-of-variables formula to A = ∫ x(t1)
x(t0)

y(g(x)) dx.

y
c(t)

x(t1)x(t0)
xx

FIGURE 24

solution Let x0 = x(t0) and x1 = x(t1). We are given that x′(t) > 0, hence x = x(t) is an increasing function of
t , so it has an inverse function t = g(x). The area A is given by

∫ x1
x0

y(g(x)) dx. Recall that y is a function of t and

t = g(x), so the height y at any point x is given by y = y(g(x)). We find the new limits of integration. Since x0 = x(t0)

and x1 = x(t1), the limits for t are t0 and t1, respectively. Also since x′(t) = dx
dt

, we have dx = x′(t)dt . Performing this
substitution gives

A =
∫ x1

x0

y(g(x)) dx =
∫ t1

t0

y(g(x))x′(t) dt.

Since g(x) = t , we have A =
∫ t1

t0

y(t)x′(t) dt .

90. Calculate the area under y = x2 over [0, 1] using Eq. (12) with the parametrizations (t3, t6) and (t2, t4).

solution The area A under y = x2 on [0, 1] is given by the integral

A =
∫ t1

t0

y(t)x′(t) dt

where x(t0) = 0 and x(t1) = 1. We first use the parametrization (t3, t6). We have x(t) = t3, y(t) = t6. Hence,

0 = x(t0) = t3
0 ⇒ t0 = 0

1 = x(t1) = t3
1 ⇒ t1 = 1

Also x′(t) = 3t2. Substituting these values in Eq. (12) we obtain

A =
∫ 1

0
t6 · 3t2 dt =

∫ 1

0
3t8 dt = 3

9
t9
∣∣∣∣1
0

= 3

9
= 1

3

Using the parametrization x(t) = t2, y(t) = t4, we have x′(t) = 2t . We find t0 and t1:

0 = x(t0) = t2
0 ⇒ t0 = 0

1 = x(t1) = t2
1 ⇒ t1 = 1 or t1 = −1.

Equation (12) is valid if x′(t) > 0, that is if t > 0. Hence we choose the positive value, t1 = 1. We now use Eq. (12) to
obtain

A =
∫ 1

0
t4 · 2t dt =

∫ 1

0
2t5 dt = 2

6
t6
∣∣∣∣1
0

= 2

6
= 1

3

Both answers agree, as expected.

91. What does Eq. (12) say if c(t) = (t, f (t))?

solution In the parametrization x(t) = t , y(t) = f (t) we have x′(t) = 1, t0 = x(t0), t1 = x(t1). Hence Eq. (12)
becomes

A =
∫ t1

t0

y(t)x′(t) dt =
∫ x(t1)

x(t0)
f (t) dt

We see that in this parametrization Eq. (12) is the familiar formula for the area under the graph of a positive function.
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92. Sketch the graph of c(t) = (ln t, 2 − t) for 1 ≤ t ≤ 2 and compute the area under the graph using Eq. (12).

solution We use the following graphs of x(t) = ln t and y(t) = 2 − t for 1 ≤ t ≤ 2:

21

1

t

y

21

1

t

y

x(t) = ln t y(t) = 2 − t

We see that for 1 < t < 2, x(t) is positive and increasing and y(t) is positive and decreasing. Also c(1) = (ln 1, 2 − 1) =
(0, 1) and c(2) = (ln 2, 2 − 2) = (ln 2, 0). Additional information is obtained from the derivative

dy

dx
= (2 − t)′

(ln t)′ = − 1

1/t
= −t,

yielding

dy

dx

∣∣∣∣
t=1

− 1 and
dy

dx

∣∣∣∣
t=2

− 2.

We obtain the following graph:

1
t

y

t = 1

t = 2

(0, 1)

(ln 2, 0)

We now use Eq. (12) to compute the area A under the graph. We have x(t) = ln t , x′(t) = 1
t , y(t) = 2 − t , t0 = 1, t1 = 2.

Hence,

A =
∫ t1

t0

y(t)x′(t) dt =
∫ 2

1
(2 − t) · 1

t
dt =

∫ 2

1

(
2

t
− 1

)
dt

= 2 ln t − t

∣∣∣∣2
1

= (2 ln 2 − 2) − (2 ln 1 − 1) = 2 ln 2 − 1 ≈ 0.386

93. Galileo tried unsuccessfully to find the area under a cycloid. Around 1630, Gilles de Roberval proved that the area
under one arch of the cycloid c(t) = (Rt − R sin t, R − R cos t) generated by a circle of radius R is equal to three times
the area of the circle (Figure 25). Verify Roberval’s result using Eq. (12).

x

R

πR 2πR

y

FIGURE 25 The area of one arch of the cycloid equals three times the area of the generating circle.

solution This reduces to∫ 2π

0
(R − R cos t)(Rt − R sin t)′ dt =

∫ 2π

0
R2(1 − cos t)2 dt = 3πR2.
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Further Insights and Challenges
94. Prove the following generalization of Exercise 93: For all t > 0, the area of the cycloidal sector OPC is equal to
three times the area of the circular segment cut by the chord PC in Figure 26.

R
t

P

O C = (Rt, 0)
x

y

R
t

(B) Circular segment cut

by the chord PC

(A) Cycloidal sector OPC 

P

O C = (Rt, 0)
x

y

FIGURE 26

solution Drop a perpendicular from point P to the x-axis and label the point of intersection T , and denote by D the
center of the circle. Then the area of the cycloidal sector is equal to the area of OPT plus the area of PT C. The latter is

a triangle with height y(t) = R − R cos t and base Rt − (Rt − R sin t) = R sin t , so its area is
1

2
R2 sin t (1 − cos t). The

area of OPT , using Eq. (12), is∫ t

0
y(u)x′(u) du =

∫ t

0
(R − R cos u)(Ru − R sin u)′ du = R2

∫ t

0
(1 − cos u)2 du

= R2
(

3

2
t − 2 sin t + 1

2
sin t cos t

)
so that the total area of the cycloidal sector is

R2
(

3

2
t − 2 sin t + 1

2
sin t cos t

)
+ R2 1

2
sin t (1 − cos t) = 3

(
1

2
R2t − 1

2
R2 sin t

)
= 3 · 1

2
R2(t − sin t)

The area of the circular segment is the area of the circular sector DPC subtended by the angle t less the area of the triangle

DPC. The triangle DPC has height R cos
t

2
and base 2R sin t

2 so that its area is R2 cos
t

2
sin

t

2
= 1

2
R2 sin t , and the

area of the circular sector is πR2 · t

2π
= 1

2
R2t . Thus the area of the circular segment is

1

2
R2(t − sin t)

which is one third the area of the cycloidal sector.

95. Derive the formula for the slope of the tangent line to a parametric curve c(t) = (x(t), y(t)) using a method
different from that presented in the text. Assume that x′(t0) and y′(t0) exist and that x′(t0) �= 0. Show that

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= y′(t0)

x′(t0)

Then explain why this limit is equal to the slope dy/dx. Draw a diagram showing that the ratio in the limit is the slope
of a secant line.

solution Since y′(t0) and x′(t0) exist, we have the following limits:

lim
h→0

y(t0 + h) − y(t0)

h
= y′(t0), lim

h→0

x(t0 + h) − x(t0)

h
= x′(t0) (1)

We use Basic Limit Laws, the limits in (1) and the given data x′(t0) �= 0, to write

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= lim

h→0

y(t0+h)−y(t0)
h

x(t0+h)−x(t0)
h

= limh→0
y(t0+h)−y(t0)

h

limh→0
x(t0+h)−x(t0)

h

= y′(t0)

x′(t0)

Notice that the quotient
y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
is the slope of the secant line determined by the points P = (x(t0), y(t0)) and

Q = (x(t0 + h), y(t0 + h)). Hence, the limit of the quotient as h → 0 is the slope of the tangent line at P , that is the
derivative dy

dx
.
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x

y

x(t0 + h)x(t0)

y(t0)

y(t0, h)

P

Q

96. Verify that the tractrix curve (� > 0)

c(t) =
(

t − � tanh
t

�
, � sech

t

�

)
has the following property: For all t , the segment from c(t) to (t, 0) is tangent to the curve and has length � (Figure 27).

y

t

c(t)

x

FIGURE 27 The tractrix c(t) =
(

t − � tanh
t

�
, � sech

t

�

)
.

solution Let P = c(t) and Q = (t, 0).

y

Q = (t, 0)

P(x(t), y(t))

x

The slope of the segment PQ is

m1 = y(t) − 0

x(t) − t
= � sech

(
t
�

)
−� tanh

(
t
�

) = − 1

sinh
(

t
�

)
We compute the slope of the tangent line at P :

m2 = dy

dx
= y′(t)

x′(t) =
(
� sech

(
t
�

))′(
t − � tanh

(
t
�

))′ = � · 1
�

(− sech
(

t
�

)
tanh

(
t
�

))
1 − � · 1

�
sech2 ( t

�

)
= −− sech

(
t
�

)
tanh

(
t
�

)
1 − sech2 ( t

�

) = − sech
(

t
�

)
tanh

(
t
�

)
tanh2 ( t

�

) = − sech
(

t
�

)
tanh

(
t
�

) = − 1

sinh
(

t
�

)
Since m1 = m2, we conclude that the segment from c(t) to (t, 0) is tangent to the curve.

We now show that |PQ| = �:

|PQ| =
√

(x(t) − t)2 + (y(t) − 0)2 =
√(

−� tanh
t

�

)2
+
(

� sech

(
t

�

))2

=
√

�2
(

tanh2
(

t

�

)
+ sech2

(
t

�

))
= �

√
sech2

(
t

�

)
sinh2

(
t

�

)
+ sech2

(
t

�

)

= � sech

(
t

�

)√
sinh2

(
t

�

)
+ 1 = � sech

(
t

�

)
cosh

(
t

�

)
= � · 1 = �



April 4, 2011

S E C T I O N 11.1 Parametric Equations 1413

97. In Exercise 54 of Section 10.1 (ET Exercise 54 of Section 9.1), we described the tractrix by the differential equation

dy

dx
= − y√

�2 − y2

Show that the curve c(t) identified as the tractrix in Exercise 96 satisfies this differential equation. Note that the derivative
on the left is taken with respect to x, not t .

solution Note that dx/dt = 1 − sech2(t/�) = tanh2(t/�) and dy/dt = − sech(t/�) tanh(t/�). Thus,

dy

dx
= dy/dt

dx/dt
= − sech(t/�)

tanh(t/�)
= −y/�√

1 − y2/�2

Multiplying top and bottom by �/� gives

dy

dx
= −y√

�2 − y2

In Exercises 98 and 99, refer to Figure 28.

98. In the parametrization c(t) = (a cos t, b sin t) of an ellipse, t is not an angular parameter unless a = b (in which
case the ellipse is a circle). However, t can be interpreted in terms of area: Show that if c(t) = (x, y), then t = (2/ab)A,
where A is the area of the shaded region in Figure 28. Hint: Use Eq. (12).

q

y

(x, y)

x

FIGURE 28 The parameter θ on the ellipse
(x

a

)2 +
(y

b

)2 = 1.

solution We compute the area A of the shaded region as the sum of the area S1 of the triangle and the area S2 of the
region under the curve. The area of the triangle is

S1 = xy

2
= (a cos t)(b sin t)

2
= ab sin 2t

4
(1)

y

(x, y)

x
S1

S2

The area S2 under the curve can be computed using Eq. (12). The lower limit of the integration is t0 = 0 (corresponds to
(a, 0)) and the upper limit is t (corresponds to (x(t), y(t))). Also y(t) = b sin t and x′(t) = −a sin t . Since x′(t) < 0 on
the interval 0 < t < π

2 (which represents the ellipse on the first quadrant), we use the positive value a sin t to obtain a
positive value for the area. This gives

S2 =
∫ t

0
b sin u · a sin u du = ab

∫ t

0
sin2u du

= ab

∫ t

0

(
1

2
− 1

2
cos 2u

)
du = ab

[
u

2
− sin 2u

4

] ∣∣∣∣t
0

(2)

= ab

[
t

2
− sin 2t

4
− 0

]
= abt

2
− ab sin 2t

4

Combining (1) and (2) we obtain

A = S1 + S2 = ab sin 2t

4
+ abt

2
− ab sin 2t

4
= abt

2

Hence, t = 2A
ab

.
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99. Show that the parametrization of the ellipse by the angle θ is

x = ab cos θ√
a2 sin2 θ + b2 cos2 θ

y = ab sin θ√
a2 sin2 θ + b2 cos2 θ

solution We consider the ellipse

x2

a2
+ y2

b2
= 1.

For the angle θ we have tan θ = y
x , hence,

y = x tan θ (1)

Substituting in the equation of the ellipse and solving for x we obtain

x2

a2
+ x2tan2θ

b2
= 1

b2x2 + a2x2tan2θ = a2b2

(a2tan2θ + b2)x2 = a2b2

x2 = a2b2

a2tan2θ + b2
= a2b2cos2θ

a2sin2θ + b2cos2θ

We now take the square root. Since the sign of the x-coordinate is the same as the sign of cos θ , we take the positive root,
obtaining

x = ab cos θ√
a2sin2θ + b2cos2θ

(2)

Hence by (1), the y-coordinate is

y = x tan θ = ab cos θ tan θ√
a2sin2θ + b2cos2θ

= ab sin θ√
a2sin2θ + b2cos2θ

(3)

Equalities (2) and (3) give the following parametrization for the ellipse:

c1(θ) =
(

ab cos θ√
a2sin2θ + b2cos2θ

,
ab sin θ√

a2sin2θ + b2cos2θ

)

11.2 Arc Length and Speed

Preliminary Questions
1. What is the definition of arc length?

solution A curve can be approximated by a polygonal path obtained by connecting points

p0 = c(t0), p1 = c(t1), . . . , pN = c(tN )

on the path with segments. One gets an approximation by summing the lengths of the segments. The definition of arc
length is the limit of that approximation when increasing the number of points so that the lengths of the segments approach
zero. In doing so, we obtain the following theorem for the arc length:

S =
∫ b

a

√
x′(t)2 + y′(t)2 dt,

which is the length of the curve c(t) = (x(t), y(t)) for a ≤ t ≤ b.

2. What is the interpretation of
√

x′(t)2 + y′(t)2 for a particle following the trajectory (x(t), y(t))?

solution The expression
√

x′(t)2 + y′(t)2 denotes the speed at time t of a particle following the trajectory (x(t), y(t)).
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3. A particle travels along a path from (0, 0) to (3, 4). What is the displacement? Can the distance traveled be determined
from the information given?

solution The net displacement is the distance between the initial point (0, 0) and the endpoint (3, 4). That is√
(3 − 0)2 + (4 − 0)2 = √

25 = 5.

The distance traveled can be determined only if the trajectory c(t) = (x(t), y(t)) of the particle is known.

4. A particle traverses the parabola y = x2 with constant speed 3 cm/s. What is the distance traveled during the first
minute? Hint: No computation is necessary.

solution Since the speed is constant, the distance traveled is the following product: L = st = 3 · 60 = 180 cm.

Exercises
In Exercises 1–10, use Eq. (3) to find the length of the path over the given interval.

1. (3t + 1, 9 − 4t), 0 ≤ t ≤ 2

solution Since x = 3t + 1 and y = 9 − 4t we have x′ = 3 and y′ = −4. Hence, the length of the path is

S =
∫ 2

0

√
32 + (−4)2 dt = 5

∫ 2

0
dt = 10.

2. (1 + 2t, 2 + 4t), 1 ≤ t ≤ 4

solution We have x = 1 + 2t and y = 2 + 4t , hence x′ = 2 and y′ = 4. Using the formula for arc length we obtain

S =
∫ 4

1

√
22 + 42 dt =

∫ 4

1

√
20 dt = √

20(4 − 1) = 6
√

5

3. (2t2, 3t2 − 1), 0 ≤ t ≤ 4

solution Since x = 2t2 and y = 3t2 − 1, we have x′ = 4t and y′ = 6t . By the formula for the arc length we get

S =
∫ 4

0

√
x′(t)2 + y′(t)2 dt =

∫ 4

0

√
16t2 + 36t2 dt = √

52
∫ 4

0
t dt = √

52 · t2

2

∣∣∣∣4
0

= 16
√

13

4. (3t, 4t3/2), 0 ≤ t ≤ 1

solution We have x = 3t and y = 4t3/2, hence x′ = 3 and y′ = 6t1/2. Using the formula for the arc length we obtain

S =
∫ 1

0

√
x′(t)2 + y′(t)2 dt =

∫ 1

0

√
32 + (6t1/2

)2
dt =

∫ 1

0

√
9 + 36t dt = 3

∫ 1

0

√
1 + 4t dt

Setting u = 1 + 4t we get

S = 3

4

∫ 5

1

√
u du = 3

4
· 2

3
u3/2

∣∣∣∣5
1

= 1

2
(53/2 − 1) ≈ 5.09

5. (3t2, 4t3), 1 ≤ t ≤ 4

solution We have x = 3t2 and y = 4t3. Hence x′ = 6t and y′ = 12t2. By the formula for the arc length we get

S =
∫ 4

1

√
x′(t)2 + y′(t)2 dt =

∫ 4

1

√
36t2 + 144t4 dt = 6

∫ 4

1

√
1 + 4t2t dt.

Using the substitution u = 1 + 4t2, du = 8t dt we obtain

S = 6

8

∫ 65

5

√
u du = 3

4
· 2

3
u3/2

∣∣∣∣65

5
= 1

2
(653/2 − 53/2) ≈ 256.43
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6. (t3 + 1, t2 − 3), 0 ≤ t ≤ 1

solution We have x = t3 + 1, y = t2 − 3, hence, x′ = 3t2 and y′ = 2t . By the formula for the arc length we get

S =
∫ 1

0

√
x′(t)2 + y′(t)2 dt =

∫ 1

0

√
9t4 + 4t2 dt =

∫ 1

0
t
√

9t2 + 4 dt

We compute the integral using the substitution u = 4 + 9t2. This gives

S = 1

18

∫ 13

4

√
u du = 1

18
· 2

3
u3/2

∣∣∣∣13

4
= 1

27
(133/2 − 43/2) = 1

27
(133/2 − 8) ≈ 1.44.

7. (sin 3t, cos 3t), 0 ≤ t ≤ π

solution We have x = sin 3t , y = cos 3t , hence x′ = 3 cos 3t and y′ = −3 sin 3t . By the formula for the arc length
we obtain:

S =
∫ π

0

√
x′(t)2 + y′(t)2 dt =

∫ π

0

√
9 cos2 3t + 9 sin2 3t dt =

∫ π

0

√
9 dt = 3π

8. (sin θ − θ cos θ, cos θ + θ sin θ), 0 ≤ θ ≤ 2

solution We have x = sin θ − θ cos θ and y = cos θ + θ sin θ . Hence, x′ = cos θ − (cos θ − θ sin θ) = θ sin θ and
y′ = − sin θ + sin θ + θ cos θ = θ cos θ. Using the formula for the arc length we obtain:

S =
∫ 2

0

√
x′(θ)2 + y′(θ)2 dθ =

∫ 2

0

√
(θ sin θ)2 + (θ cos θ)2 dθ

=
∫ 2

0

√
θ2(sin2 θ + cos2 θ) dθ =

∫ 2

0
θ dθ = θ2

2

∣∣∣∣2
0

= 2

In Exercises 9 and 10, use the identity

1 − cos t

2
= sin2 t

2

9. (2 cos t − cos 2t, 2 sin t − sin 2t), 0 ≤ t ≤ π
2

solution We have x = 2 cos t − cos 2t , y = 2 sin t − sin 2t . Thus, x′ = −2 sin t + 2 sin 2t and y′ = 2 cos t − 2 cos 2t .
We get

x′(t)2 + y′(t)2 = (−2 sin t + 2 sin 2t)2 + (2 cos t − 2 cos 2t)2

= 4 sin2 t − 8 sin t sin 2t + 4 sin2 2t + 4 cos2 t − 8 cos t cos 2t + 4 cos2 2t

= 4(sin2 t + cos2 t) + 4(sin2 2t + cos2 2t) − 8(sin t sin 2t + cos t cos 2t)

= 4 + 4 − 8 cos(2t − t) = 8 − 8 cos t = 8(1 − cos t)

We now use the formula for the arc length to obtain

S =
∫ π/2

0

√
x′(t)2 + y′(t)2 =

∫ π/2

0

√
8(1 − cos t) dt =

∫ π/2

0

√
16 sin2 t

2
dt = 4

∫ π/2

0
sin

t

2
dt

= −8 cos
t

2

∣∣∣∣π/2

0
= −8

(
cos

π

4
− cos 0

)
= −8

(√
2

2
− 1

)
≈ 2.34

10. (5(θ − sin θ), 5(1 − cos θ)), 0 ≤ θ ≤ 2π

solution Since x = 5(θ − sin θ) and y = 5(1 − cos θ), we have x′ = 5(1 − cos θ) and y′ = 5 sin θ . Using the formula
for the arc length we obtain:

S =
∫ 2π

0

√
x′(θ)2 + y′(θ)2 dθ =

∫ 2π

0

√
25(1 − cos θ)2 + 25 sin2 θ dθ

= 5
∫ 2π

0

√
1 − 2 cos θ + cos2 θ + sin2 θ dθ = 5

∫ 2π

0

√
2(1 − cos θ) dθ

= 5
∫ 2π

0

√
4 sin2 θ

2
dθ = 10

∫ 2π

0
sin

θ

2
dθ = 20

∫ π

0
sin u du

= 20(− cos u)

∣∣∣∣π
0

= −20(−1 − 1) = 40.
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11. Show that one arch of a cycloid generated by a circle of radius R has length 8R.

solution Recall from earlier that the cycloid generated by a circle of radius R has parametric equations x = Rt −
R sin t , y = R − R cos t . Hence, x′ = R − R cos t , y′ = R sin t . Using the identity sin2 t

2
= 1 − cos t

2
, we get

x′(t)2 + y′(t)2 = R2(1 − cos t)2 + R2 sin2 t = R2(1 − 2 cos t + cos2 t + sin2 t)

= R2(1 − 2 cos t + 1) = 2R2(1 − cos t) = 4R2 sin2 t

2

One arch of the cycloid is traced as t varies from 0 to 2π . Hence, using the formula for the arc length we obtain:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
4R2 sin2 t

2
dt = 2R

∫ 2π

0
sin

t

2
dt = 4R

∫ π

0
sin u du

= −4R cos u

∣∣∣∣π
0

= −4R(cos π − cos 0) = 8R

12. Find the length of the spiral c(t) = (t cos t, t sin t) for 0 ≤ t ≤ 2π to three decimal places (Figure 7). Hint: Use the
formula ∫ √

1 + t2 dt = 1

2
t
√

1 + t2 + 1

2
ln
(
t +

√
1 + t2

)
y

x

5

10−10

−10

t = 0

t = 2p

FIGURE 7 The spiral c(t) = (t cos t, t sin t).

solution We use the formula for the arc length:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt (1)

Differentiating x = t cos t and y = t sin t yields

x′(t) = d

dt
(t cos t) = cos t − t sin t

y′(t) = d

dt
(t sin t) = sin t + t cos t

Thus, √
x′(t)2 + y′(t)2 =

√
(cos t − t sin t)2 + (sin t + t cos t)2

=
√

cos2 t − 2t cos t sin t + t2 sin2 t + sin2 t + 2t sin t cos t + t2 cos2 t

=
√

(cos2 t + sin2 t)(1 + t2) =
√

1 + t2

We substitute into (1) and use the integral given in the hint to obtain the following arc length:

S =
∫ 2π

0

√
1 + t2 dt = 1

2
t
√

1 + t2 + 1

2
ln
(
t +

√
1 + t2

) ∣∣∣∣2π

0

= 1

2
· 2π

√
1 + (2π)2 + 1

2
ln

(
2π +

√
1 + (2π)2

)
−
(

0 + 1

2
ln 1

)
= π

√
1 + 4π2 + 1

2
ln
(

2π +
√

1 + 4π2
)

≈ 21.256
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13. Find the length of the tractrix (see Figure 6)

c(t) = (t − tanh(t), sech(t)), 0 ≤ t ≤ A

solution Since x = t − tanh(t) and y = sech(t) we have x′ = 1 − sech2(t) and y′ = −sech(t) tanh(t). Hence,

x′(t)2 + y′(t)2 = (1 − sech2(t))
2 + sech2(t)tanh2(t)

= 1 − 2 sech2(t) + sech4(t) + sech2(t)tanh2(t)

= 1 − 2 sech2(t) + sech2(t)(sech2(t) + tanh2(t))

= 1 − 2 sech2(t) + sech2(t) = 1 − sech2(t) = tanh2(t)

Hence, using the formula for the arc length we get:

S =
∫ A

0

√
x′(t)2 + y′(t)2 dt =

∫ A

0

√
tanh2(t) dt =

∫ A

0
tanh(t) dt = ln(cosh(t))

∣∣∣∣A
0

= ln(cosh(A)) − ln(cosh(0)) = ln(cosh(A)) − ln 1 = ln(cosh(A))

14. Find a numerical approximation to the length of c(t) = (cos 5t, sin 3t) for 0 ≤ t ≤ 2π (Figure 8).

y

x

1

1

FIGURE 8

solution Since x = cos 5t and y = sin 3t , we have

x′(t) = −5 sin 5t, y′(t) = 3 cos 3t

so that

x′(t)2 + y′(t)2 = 25 sin2 5t + 9 cos2 3t

Then the arc length is ∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
25 sin2 5t + 9 cos2 3t dt ≈ 24.60296

In Exercises 15–18, determine the speed s at time t (assume units of meters and seconds).

15. (t3, t2), t = 2

solution We have x(t) = t3, y(t) = t2 hence x′(t) = 3t2, y′(t) = 2t . The speed of the particle at time t is thus,

ds
dt

=
√

x′(t)2 + y′(t)2 =
√

9t4 + 4t2 = t
√

9t2 + 4. At time t = 2 the speed is

ds

dt

∣∣∣∣
t=2

= 2
√

9 · 22 + 4 = 2
√

40 = 4
√

10 ≈ 12.65 m/s.

16. (3 sin 5t, 8 cos 5t), t = π
4

solution We have x = 3 sin 5t , y = 8 cos 5t , hence x′ = 15 cos 5t , y′ = −40 sin 5t . Thus, the speed of the particle
at time t is

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

225 cos2 5t + 1600 sin2 5t

=
√

225(cos2 5t + sin2 5t) + 1375 sin2 5t = 5
√

9 + 55 sin2 5t
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Thus,

ds

dt
= 5
√

9 + 55 sin2 5t .

The speed at time t = π
4 is thus

ds

dt

∣∣∣∣
t=π/4

= 5

√
9 + 55 sin2

(
5 · π

4

) ∼= 30.21 m/s

17. (5t + 1, 4t − 3), t = 9

solution Since x = 5t + 1, y = 4t − 3, we have x′ = 5 and y′ = 4. The speed of the particle at time t is

ds

dt
= √x′(t) + y′(t) =

√
52 + 42 = √

41 ≈ 6.4 m/s.

We conclude that the particle has constant speed of 6.4 m/s.

18. (ln(t2 + 1), t3), t = 1

solution We have x = ln(t2 + 1), y = t3, so x′ = 2t

t2 + 1
and y′ = 3t2. The speed of the particle at time t is thus

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

4t2

(t2 + 1)
2

+ 9t4 = t

√
4

(t2 + 1)
2

+ 9t2.

The speed at time t = 1 is

ds

dt

∣∣∣∣
t=1

=
√

4

22
+ 9 = √

10 ≈ 3.16 m/s.

19. Find the minimum speed of a particle with trajectory c(t) = (t3 − 4t, t2 + 1) for t ≥ 0. Hint: It is easier to find the
minimum of the square of the speed.

solution We first find the speed of the particle. We have x(t) = t3 − 4t , y(t) = t2 + 1, hence x′(t) = 3t2 − 4 and
y′(t) = 2t . The speed is thus

ds

dt
=
√

(3t2 − 4)
2 + (2t)2 =

√
9t4 − 24t2 + 16 + 4t2 =

√
9t4 − 20t2 + 16.

The square root function is an increasing function, hence the minimum speed occurs at the value of t where the function
f (t) = 9t4 − 20t2 + 16 has minimum value. Since lim

t→∞ f (t) = ∞, f has a minimum value on the interval 0 ≤ t < ∞,

and it occurs at a critical point or at the endpoint t = 0. We find the critical point of f on t ≥ 0:

f ′(t) = 36t3 − 40t = 4t (9t2 − 10) = 0 ⇒ t = 0, t =
√

10

9
.

We compute the values of f at these points:

f (0) = 9 · 04 − 20 · 02 + 16 = 16

f

(√
10

9

)
= 9

(√
10

9

)4

− 20

(√
10

9

)2

+ 16 = 44

9
≈ 4.89

We conclude that the minimum value of f on t ≥ 0 is 4.89. The minimum speed is therefore(
ds

dt

)
min

≈ √
4.89 ≈ 2.21.

20. Find the minimum speed of a particle with trajectory c(t) = (t3, t−2) for t ≥ 0.5.

solution We first compute the speed of the particle. Since x(t) = t3 and y(t) = t−2, we have x′(t) = 3t2 and

y′(t) = −2t−3. The speed is

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

9t4 + 4t−6.

The square root function is an increasing function, hence the minimum value of ds
dt

occurs at the point where the function

f (t) = 9t4 + 4t−6 attains its minimum value. We find the critical points of f on the interval t ≥ 0.5:

f ′(t) = 36t3 − 24t−7 = 0
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3t10 − 2 = 0 ⇒ t = 10

√
2

3
≈ 0.96

Since lim
t→∞ f (t) = ∞, the minimum value on 0.5 ≤ t < ∞ exists, and it occurs at the critical point t = 0.96 or at the

endpoint t = 0.5. We compute the values of f at these points:

f (0.96) = 9 · (0.96)4 + 4 · (0.96)−6 = 12.75

f (0.5) = 9(0.5)4 + 4(0.5)−6 = 256.56

We conclude that the minimum value of f on the interval t ≥ 0.5 is 12.75. The minimum speed for t ≥ 0.5 is therefore(
ds

dt

)
min

= √
12.75 ≈ 3.57

21. Find the speed of the cycloid c(t) = (4t − 4 sin t, 4 − 4 cos t) at points where the tangent line is horizontal.

solution We first find the points where the tangent line is horizontal. The slope of the tangent line is the following
quotient:

dy

dx
= dy/dt

dx/dt
= 4 sin t

4 − 4 cos t
= sin t

1 − cos t
.

To find the points where the tangent line is horizontal we solve the following equation for t ≥ 0:

dy

dx
= 0,

sin t

1 − cos t
= 0 ⇒ sin t = 0 and cos t �= 1.

Now, sin t = 0 and t ≥ 0 at the points t = πk, k = 0, 1, 2, . . . . Since cos πk = (−1)k , the points where cos t �= 1 are
t = πk for k odd. The points where the tangent line is horizontal are, therefore:

t = π(2k − 1), k = 1, 2, 3, . . .

The speed at time t is given by the following expression:

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

(4 − 4 cos t)2 + (4 sin t)2

=
√

16 − 32 cos t + 16 cos2 t + 16 sin2 t = √
16 − 32 cos t + 16

= √32(1 − cos t) =
√

32 · 2 sin2 t

2
= 8

∣∣∣∣sin
t

2

∣∣∣∣
That is, the speed of the cycloid at time t is

ds

dt
= 8

∣∣∣∣sin
t

2

∣∣∣∣ .
We now substitute

t = π(2k − 1), k = 1, 2, 3, . . .

to obtain

ds

dt
= 8

∣∣∣∣sin
π(2k − 1)

2

∣∣∣∣ = 8|(−1)k+1| = 8

22. Calculate the arc length integral s(t) for the logarithmic spiral c(t) = (et cos t, et sin t).

solution We have x′(t) = et (cos t − sin t), y′(t) = et (cos t + sin t) so that

x′(t)2 + y′(t)2 = e2t (cos2 t − 2 cos t sin t + sin2 t + cos2 t + 2 cos t sin t + sin2 t) = 2e2t (cos2 t + sin2 t) = 2e2t

so that the arc length integral is ∫ b

a

√
x′(t)2 + y′(t)2 dt = √

2
∫ b

a
et dt

If neither a nor b is ±∞, then this equals
√

2(eb − ea). Note that the origin corresponds to t = −∞.
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In Exercises 23–26, plot the curve and use the Midpoint Rule with N = 10, 20, 30, and 50 to approximate its
length.

23. c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π

solution The curve of c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π is shown in the figure below:

y

t = 0, t = 2π, (1, 1)t = π, (−1, 1)

x

t =     (0, e)π 
2

t =      (0,    )3π 
2

1 
e

c(t) = (cos t, esin t ), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(− sin t)2 + (cos t esin t )

2
dt.

That is, S = ∫ 2π
0

√
sin2 t + cos2 t e2 sin t dt . We approximate the integral using the Mid-Point Rule with N = 10, 20,

30, 50. For f (t) =
√

sin2 t + cos2 t e2 sin t we obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 6.903734

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 6.915035

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 6.914949

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 6.914951

24. c(t) = (t − sin 2t, 1 − cos 2t) for 0 ≤ t ≤ 2π

solution The curve is shown in the figure below:

62 4

2

1

x

y

c(t) = (t − sin 2t, 1 − cos 2t), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
(1 − 2 cos 2t)2 + (2 sin 2t)2 dt =

∫ 2π

0

√
1 − 4 cos 2t + 4 cos2 2t + 4 sin2 2t dt =

∫ 2π

0

√
5 − 4 cos 2t dt.
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That is,

S =
∫ 2π

0

√
5 − 4 cos 2t dt.

Approximating the length using the Mid-Point Rule with N = 10, 20, 30, 50 for f (t) = √
5 − 4 cos 2t we obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 13.384047

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 13.365095

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 13.364897

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 13.364893

25. The ellipse
(x

5

)2 +
(y

3

)2 = 1

solution We use the parametrization given in Example 4, section 12.1, that is, c(t) = (5 cos t, 3 sin t), 0 ≤ t ≤ 2π .
The curve is shown in the figure below:

y

t = 0
t = 2π x

c(t) = (5 cos t, 3 sin t), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(−5 sin t)2 + (3 cos t)2 dt

=
∫ 2π

0

√
25 sin2 t + 9 cos2 t dt =

∫ 2π

0

√
9(sin2 t + cos2 t) + 16 sin2 t dt =

∫ 2π

0

√
9 + 16 sin2 t dt.

That is,

S =
∫ 2π

0

√
9 + 16 sin2 t dt.

We approximate the integral using the Mid-Point Rule with N = 10, 20, 30, 50, for f (t) =
√

9 + 16 sin2 t . We obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 25.528309
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(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 25.526999

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 25.526999

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 25.526999

26. x = sin 2t , y = sin 3t for 0 ≤ t ≤ 2π

solution The curve is shown in the figure below:

y

x

c(t) = (sin 2t, sin 3t), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(2 cos 2t)2 + (3 cos 3t)2 dt =

∫ 2π

0

√
4 cos2 2t + 9 cos2 3t dt.

We approximate the length using the Mid-Point Rule with N = 10, 20, 30, 50 for f (t) =
√

4 cos2 2t + 9 cos2 3t . We
obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 15.865169

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 15.324697

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 15.279322

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 15.287976
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27. If you unwind thread from a stationary circular spool, keeping the thread taut at all times, then the endpoint traces a
curve C called the involute of the circle (Figure 9). Observe that PQ has length Rθ . Show that C is parametrized by

c(θ) = (R(cos θ + θ sin θ), R(sin θ − θ cos θ)
)

Then find the length of the involute for 0 ≤ θ ≤ 2π .

P = (x, y)

y

q x

R

Q

FIGURE 9 Involute of a circle.

solution Suppose that the arc Q̂T corresponding to the angle θ is unwound. Then the length of the segment QP

equals the length of this arc. That is, QP = Rθ . With the help of the figure we can see that

x = OA + AB = OA + EP = R cos θ + QP sin θ = R cos θ + Rθ sin θ = R(cos θ + θ sin θ).

Furthermore,

y = QA − QE = R sin θ − QP cos θ = R sin θ − Rθ cos θ = R(sin θ − θ cos θ)

The coordinates of P with respect to the parameter θ form the following parametrization of the curve:

c(θ) = (R(cos θ + θ sin θ), R(sin θ − θ cos θ)), 0 ≤ θ ≤ 2π.

We find the length of the involute for 0 ≤ θ ≤ 2π , using the formula for the arc length:

S =
∫ 2π

0

√
x′(θ)2 + y′(θ)2 dθ.

We compute the integrand:

x′(θ) = d

dθ
(R(cos θ + θ sin θ)) = R(− sin θ + sin θ + θ cos θ) = Rθ cos θ

y′(θ) = d

dθ
(R(sin θ − θ cos θ)) = R(cos θ − (cos θ − θ sin θ)) = Rθ sin θ√

x′(θ)2 + y′(θ)2 =
√

(Rθ cos θ)2 + (Rθ sin θ)2 =
√

R2θ2(cos2 θ + sin2 θ) =
√

R2θ2 = Rθ

We now compute the arc length:

S =
∫ 2π

0
Rθ dθ = Rθ2

2

∣∣∣∣2π

0
= R · (2π)2

2
= 2π2R.

28. Let a > b and set

k =
√

1 − b2

a2

Use a parametric representation to show that the ellipse
(
x
a

)2 + ( y
b

)2 = 1 has length L = 4aG
(
π
2 , k

)
, where

G(θ, k) =
∫ θ

0

√
1 − k2 sin2 t dt

is the elliptic integral of the second kind.

solution Since the ellipse is symmetric with respect to the x and y axis, its length L is four times the length of the
part of the ellipse which is in the first quadrant. This part is represented by the following parametrization: x(t) = a sin t ,
y(t) = b cos t , 0 ≤ t ≤ π

2 . Using the formula for the arc length we get:

L = 4
∫ π/2

0

√
x′(t)2 + y′(t)2 dt = 4

∫ π/2

0

√
(a cos t)2 + (−b sin t)2 dt

= 4
∫ π/2

0

√
a2 cos2 t + b2 sin2 t dt
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We rewrite the integrand as follows:

L = 4
∫ π/2

0

√
a2 cos2 t + a2 sin2 t + (b2 − a2) sin2 t dt

= 4
∫ π/2

0

√
a2(cos2 t + sin2 t) + (b2 − a2) sin2 t dt

= 4
∫ π/2

0

√
a2 + (b2 − a2) sin2 t dt = 4a

∫ π/2

0

√
a2

a2
+ b2 − a2

a2
sin2 t dt

= 4a

∫ π/2

0

√
1 −

(
1 − b2

a2

)
sin2 t dt = 4a

∫ π/2

0

√
1 − k2 sin2 t dt = 4aG

(π

2
, k
)

where k =
√

1 − b2

a2 .

In Exercises 29–32, use Eq. (4) to compute the surface area of the given surface.

29. The cone generated by revolving c(t) = (t, mt) about the x-axis for 0 ≤ t ≤ A

solution Substituting y(t) = mt , y′(t) = m, x′(t) = 1, a = 0, and b = 0 in the formula for the surface area, we get

S = 2π

∫ A

0
mt
√

1 + m2 dt = 2π
√

1 + m2m

∫ A

0
t dt = 2πm

√
1 + m2 · t2

2

∣∣∣∣A
0

= m
√

1 + m2πA2

30. A sphere of radius R

solution The sphere of radius R is generated by revolving the half circle c(t) = (R cos t, R sin t), 0 ≤ t ≤ π about
the x-axis. We have x(t) = R cos t , x′(t) = −R sin t , y(t) = R sin t , y′(t) = R cos t . Using the formula for the surface
area, we get

S = 2π

∫ π

0
y(t)

√
x′(t)2 + y′(t)2 dt = 2π

∫ π

0
R sin t

√
R2 sin2 t + R2 cos2 t dt

= 2πR2
∫ π

0
sin t dt = −2πR2 cos t

∣∣∣∣π
0

= −2πR2(−1 − 1) = 4πR2

31. The surface generated by revolving one arch of the cycloid c(t) = (t − sin t, 1 − cos t) about the x-axis

solution One arch of the cycloid is traced as t varies from 0 to 2π . Since x(t) = t − sin t and y(t) = 1 − cos t , we

have x′(t) = 1 − cos t and y′(t) = sin t . Hence, using the identity 1 − cos t = 2 sin2 t
2 , we get

x′(t)2 + y′(t)2 = (1 − cos t)2 + sin2 t = 1 − 2 cos t + cos2 t + sin2 t = 2 − 2 cos t = 4 sin2 t

2

By the formula for the surface area we obtain:

S = 2π

∫ 2π

0
y(t)

√
x′(t)2 + y′(t)2 dt = 2π

∫ 2π

0
(1 − cos t) · 2 sin

t

2
dt

= 2π

∫ 2π

0
2 sin2 t

2
· 2 sin

t

2
dt = 8π

∫ 2π

0
sin3 t

2
dt = 16π

∫ π

0
sin3 u du

We use a reduction formula to compute this integral, obtaining

S = 16π

[
1

3
cos3 u − cos u

] ∣∣∣∣π
0

= 16π

[
4

3

]
= 64π

3

32. The surface generated by revolving the astroid c(t) = (cos3 t, sin3 t) about the x-axis for 0 ≤ t ≤ π
2

solution We have x(t) = cos3 t , y(t) = sin3 t , x′(t) = −3 cos2 t sin t , y′(t) = 3 sin2 t cos t . Hence,

x′(t)2 + y′(t)2 = 9 cos4 t sin2 t + 9 sin4 t cos2 t = 9 cos2 t sin2 t (cos2 t + sin2 t) = 9 cos2 t sin2 t

Using the formula for the surface area we get

S = 2π

∫ π/2

0
y(t)

√
x′(t)2 + y′(t)2 dt = 2π

∫ π/2

0
sin3 t · 3 cos t sin t dt = 6π

∫ π/2

0
sin4 t cos t dt

We compute the integral using the substitution u = sin t du = cos t dt . We obtain

S = 6π

∫ 1

0
u4 du = 6π

u5

5

∣∣∣∣1
0

= 6π

5
.
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Further Insights and Challenges
33. Let b(t) be the “Butterfly Curve”:

x(t) = sin t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

y(t) = cos t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

(a) Use a computer algebra system to plot b(t) and the speed s′(t) for 0 ≤ t ≤ 12π .

(b) Approximate the length b(t) for 0 ≤ t ≤ 10π .

solution

(a) Let f (t) = ecos t − 2 cos 4t − sin
(

t
12

)5, then

x(t) = sin tf (t)

y(t) = cos tf (t)

and so

(x′(t))2 + (y′(t))2 = [sin tf ′(t) + cos tf (t)]2 + [cos tf ′(t) − sin tf (t)]2

Using the identity sin2 t + cos2 t = 1, we get

(x′(t))2 + (y′(t))2 = (f ′(t))2 + (f (t))2.

Thus, s′(t) is the following:√√√√[
ecos t − 2 cos 4t − sin

(
t

12

)5
]2

+
[
− sin tecos t + 8 sin 4t − 5

12

(
t

12

)4
cos

(
t

12

)5
]2

.

The following figures show the curves of b(t) and the speed s′(t) for 0 ≤ t ≤ 10π :

y

x
t = 10p

t = 0

302010

15

20

10

5

x

y

The “Butterfly Curve” b(t), 0 ≤ t ≤ 10π s′(t), 0 ≤ t ≤ 10π

Looking at the graph, we see it would be difficult to compute the length using numeric integration; due to the high
frequency oscillations, very small steps would be needed.

(b) The length of b(t) for 0 ≤ t ≤ 10π is given by the integral: L = ∫ 10π
0 s′(t) dt where s′(t) is given in part (a). We

approximate the length using the Midpoint Rule with N = 30. The numerical methods in Mathematica approximate
the answer by 211.952. Using the Midpoint Rule with N = 50, we get 204.48; with N = 500, we get 211.6; and with
N = 5000, we get 212.09.

34. Let a ≥ b > 0 and set k = 2
√

ab

a − b
. Show that the trochoid

x = at − b sin t, y = a − b cos t, 0 ≤ t ≤ T

has length 2(a − b)G
(
T
2 , k

)
with G(θ, k) as in Exercise 28.

solution We have x′(t) = a − b cos t , y′(t) = b sin t . Hence,

x′(t)2 + y′(t)2 = (a − b cos t)2 + (b sin t)2 = a2 − 2ab cos t + b2 cos2 t + b2 sin2 t

= a2 + b2 − 2ab cos t
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The length of the trochoid for 0 ≤ t ≤ T is

L =
∫ T

0

√
a2 + b2 − 2ab cos t dt

We rewrite the integrand as follows to bring it to the required form. We use the identity 1 − cos t = 2 sin2 t
2 to obtain

L =
∫ T

0

√
(a − b)2 + 2ab − 2ab cos t dt =

∫ T

0

√
(a − b)2 + 2ab(1 − cos t) dt

=
∫ T

0

√
(a − b)2 + 4ab sin2 t

2
dt =

∫ T

0

√
(a − b)2

(
1 + 4ab

(a − b)2
sin2 t

2

)
dt

= (a − b)

∫ T

0

√
1 + k2 sin2 t

2
dt

(where k = 2
√

ab
a−b

).

Substituting u = t
2 , du = 1

2 dt , we get

L = 2(a − b)

∫ T/2

0

√
1 + k2 sin2 u du = 2(a − b)E(T /2, k)

35. A satellite orbiting at a distance R from the center of the earth follows the circular path x = R cos ωt , y = R sin ωt .

(a) Show that the period T (the time of one revolution) is T = 2π/ω.

(b) According to Newton’s laws of motion and gravity,

x′′(t) = −Gme
x

R3
, y′′(t) = −Gme

y

R3

where G is the universal gravitational constant and me is the mass of the earth. Prove that R3/T 2 = Gme/4π2. Thus,
R3/T 2 has the same value for all orbits (a special case of Kepler’s Third Law).

solution

(a) As shown in Example 4, the circular path has constant speed of ds
dt

= ωR. Since the length of one revolution is 2πR,
the period T is

T = 2πR

ωR
= 2π

ω
.

(b) Differentiating x = R cos ωt twice with respect to t gives

x′(t) = −Rω sin ωt

x′′(t) = −Rω2 cos ωt

Substituting x(t) and x′′(t) in the equation x′′(t) = −Gme
x

R3
and simplifying, we obtain

−Rω2 cos ωt = −Gme · R cos ωt

R3

−Rω2 = −Gme

R2
⇒ R3 = Gme

ω2

By part (a), T = 2π

ω
. Hence, ω = 2π

T
. Substituting yields

R3 = Gme

4π2

T 2

= T 2Gme

4π2
⇒ R3

T 2
= Gme

4π2

36. The acceleration due to gravity on the surface of the earth is

g = Gme

R2
e

= 9.8 m/s2, where Re = 6378 km

Use Exercise 35(b) to show that a satellite orbiting at the earth’s surface would have period Te = 2π
√

Re/g ≈ 84.5 min.
Then estimate the distance Rm from the moon to the center of the earth. Assume that the period of the moon (sidereal
month) is Tm ≈ 27.43 days.
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solution By part (b) of Exercise 35, it follows that

R3
e

T 2
e

= Gme

4π2
⇒ T 2

e = 4π2R3
e

Gme
= 4π2Re

Gme

R2
e

= 4π2Re

g

Hence,

Te = 2π

√
Re

g
= 2π

√
6378 · 103

9.8
≈ 5068.8 s ≈ 84.5 min.

In part (b) of Exercise 35 we showed that
R3

T 2
is the same for all orbits. It follows that this quotient is the same for the

satellite orbiting at the earth’s surface and for the moon orbiting around the earth. Thus,

R3
m

T 2
m

= R3
e

T 2
e

⇒ Rm = Re

(
Tm

Te

)2/3
.

Setting Tm = 27.43 · 1440 = 39,499.2 minutes, Te = 84.5 minutes, and Re = 6378 km we get

Rm = 6378

(
39,499.2

84.5

)2/3
≈ 384,154 km.

11.3 Polar Coordinates

Preliminary Questions
1. Points P and Q with the same radial coordinate (choose the correct answer):

(a) Lie on the same circle with the center at the origin.

(b) Lie on the same ray based at the origin.

solution Two points with the same radial coordinate are equidistant from the origin, therefore they lie on the same
circle centered at the origin. The angular coordinate defines a ray based at the origin. Therefore, if the two points have the
same angular coordinate, they lie on the same ray based at the origin.

2. Give two polar representations for the point (x, y) = (0, 1), one with negative r and one with positive r .

solution The point (0, 1) is on the y-axis, distant one unit from the origin, hence the polar representation with positive
r is (r, θ) = (1, π

2

)
. The point (r, θ) = (−1, π

2

)
is the reflection of (r, θ) = (1, π

2

)
through the origin, hence we must

add π to return to the original point.
We obtain the following polar representation of (0, 1) with negative r:

(r, θ) =
(
−1,

π

2
+ π

)
=
(

−1,
3π

2

)
.

3. Describe each of the following curves:

(a) r = 2 (b) r2 = 2 (c) r cos θ = 2

solution

(a) Converting to rectangular coordinates we get√
x2 + y2 = 2 or x2 + y2 = 22.

This is the equation of the circle of radius 2 centered at the origin.

(b) We convert to rectangular coordinates, obtaining x2 + y2 = 2. This is the equation of the circle of radius
√

2, centered
at the origin.

(c) We convert to rectangular coordinates. Since x = r cos θ we obtain the following equation: x = 2. This is the equation
of the vertical line through the point (2, 0).

4. If f (−θ) = f (θ), then the curve r = f (θ) is symmetric with respect to the (choose the correct answer):

(a) x-axis (b) y-axis (c) origin

solution The equality f (−θ) = f (θ) for all θ implies that whenever a point (r, θ) is on the curve, also the point
(r, −θ) is on the curve. Since the point (r, −θ) is the reflection of (r, θ) with respect to the x-axis, we conclude that the
curve is symmetric with respect to the x-axis.
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Exercises
1. Find polar coordinates for each of the seven points plotted in Figure 16.

x

(x, y) = (23, 2) 

y

4

4
A

B

C D

G

E F

FIGURE 16

solution We mark the points as shown in the figure.

x

A
y

F(2  3, 2)

G(2  3, −2)

B
C D

E

Using the data given in the figure for the x and y coordinates and the quadrants in which the point are located, we obtain:

(A), with rectangular coordinates (−3, 4): r =
√

(−3)2 + 32 = √
18

θ = π − π
4 = 3π

4

⇒ (r, θ) =
(

3
√

2, 3π
4

)

x

A
y

3  2
3π 
4

(B), with rectangular coordinates (−3, 0):
r = 3
θ = π

⇒ (r, θ) = (3, π)

x

y

3B

π

(C), with rectangular coordinates (−2, −1):

r =
√

22 + 12 = √
5 ≈ 2.2

θ = tan−1
(−1

−2

)
= tan−1

(
1
2

)
= π + 0.46 ≈ 3.6

⇒ (r, θ) ≈
(√

5, 3.6
)

x

y

C

3.6

2.2
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(D), with rectangular coordinates (−1, −1):
r =

√
12 + 12 = √

2 ≈ 1.4
θ = π + π

4 = 5π
4

⇒ (r, θ) ≈
(√

2, 5π
4

)

x

y

D

5π 
4

1.4

(E), with rectangular coordinates (1, 1):
r =

√
12 + 12 = √

2 ≈ 1.4

θ = tan−1
(

1
1

)
= π

4
⇒ (r, θ) ≈

(√
2, π

4

)

x

y

E π 
41.4

(F), with rectangular coordinates (2
√

3, 2):
r =

√(
2
√

3
)2 + 22 = √

16 = 4

θ = tan−1
(

2
2
√

3

)
= tan−1

(
1√
3

)
= π

6

⇒ (r, θ) = (4, π
6

)

x

y

F(2  3, 2)

π 
6

4

(G), with rectangular coordinates (2
√

3, −2): G is the reflection of F about the x axis, hence the two points have equal
radial coordinates, and the angular coordinate of G is obtained from the angular coordinate of F : θ = 2π − π

6 = 11π
6 .

Hence, the polar coordinates of G are
(

4, 11π
6

)
.

2. Plot the points with polar coordinates:

(a)
(
2, π

6

)
(b)

(
4, 3π

4

)
(c)

(
3, −π

2

)
(d)

(
0, π

6

)
solution We first plot the ray θ = θ0 for the given angle θ0, and then mark the point on this line distanced r = r0
from the origin. We obtain the following points:

y

x

π
6

π
6(2,     )

2

y

x

3π
4(4,     )

3π
44

y

x

3
π
2(3, −    )

π
2

−

y

x
π
6(0,    )

π
6

(a) (b) (c) (d)

R = 0 is the point (0, 0) in rect. coords.

3. Convert from rectangular to polar coordinates.

(a) (1, 0) (b) (3,
√

3) (c) (−2, 2) (d) (−1,
√

3)

solution
(a) The point (1, 0) is on the positive x axis distanced one unit from the origin. Hence, r = 1 and θ = 0. Thus,
(r, θ) = (1, 0).

(b) The point
(

3,
√

3
)

is in the first quadrant so θ = tan−1
(√

3
3

)
= π

6 . Also, r =
√

32 +
(√

3
)2 = √

12. Hence,

(r, θ) =
(√

12, π
6

)
.
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(c) The point (−2, 2) is in the second quadrant. Hence,

θ = tan−1
(

2

−2

)
= tan−1(−1) = π − π

4
= 3π

4
.

Also, r =
√

(−2)2 + 22 = √
8. Hence, (r, θ) =

(√
8, 3π

4

)
.

(d) The point
(
−1,

√
3
)

is in the second quadrant, hence,

θ = tan−1

(√
3

−1

)
= tan−1

(
−√

3
)

= π − π

3
= 2π

3
.

Also, r =
√

(−1)2 +
(√

3
)2 = √

4 = 2. Hence, (r, θ) =
(

2, 2π
3

)
.

4. Convert from rectangular to polar coordinates using a calculator (make sure your choice of θ gives the correct
quadrant).

(a) (2, 3) (b) (4, −7) (c) (−3, −8) (d) (−5, 2)

solution

(a) The point (2, 3) is in the first quadrant, with x = 2 and y = 3. Hence

θ = tan−1
(

3

2

)
≈ 0.98

r =
√

22 + 32 = √
13 ≈ 3.6

⇒ (r, θ) ≈ (3.6, 0.98) .

(b) The point (4, −7) is in the fourth quadrant with x = 4 and y = −7. We have

tan−1
(−7

4

)
≈ −1.05

r =
√

(−7)2 + 42 = √
65 ≈ 8.1

Note that tan−1 an angle less that zero in the fourth quadrant; since we want an angle between 0 and 2π , we add 2π to
get θ ≈ 2π − 1.05 ≈ 5.232. Thus (r, θ) ≈ (8.1, 5.2).

(c) The point (−3, −8) is in the third quadrant, with x = −3 and y = −8. We have

tan−1
(−8

−3

)
= tan−1

(
8

3

)
≈ 1.212

r =
√

(−3)2 + (−8)2 = √
73 ≈ 8.54

Note that tan−1 produced an angle in the first quadrant; we want the third quadrant angle with the same tangent, so we
add π to get θ ≈ π + 1.212 ≈ 4.35. Thus (r, θ) ≈ (8.54, 4.35)

(d) The point (−5, 2) is in the second quadrant, with x = −5 and y = 2. We have

tan−1
(

2

−5

)
≈ −0.38

r =
√

22 + (−5)2 = √
29 ≈ 5.39

Note that the angle is in the fourth quadrant; to get the second quadrant angle with the same tangent and in the range
[0, 2π), we add π to get θ ≈ π − 0.38 ≈ 2.76. Thus (r, θ) ≈ (5.39, 2.76).

5. Convert from polar to rectangular coordinates:

(a)
(
3, π

6

)
(b)

(
6, 3π

4

)
(c)

(
0, π

5

)
(d)

(
5, −π

2

)
solution

(a) Since r = 3 and θ = π
6 , we have:

x = r cos θ = 3 cos
π

6
= 3 ·

√
3

2
≈ 2.6

y = r sin θ = 3 sin
π

6
= 3 · 1

2
= 1.5

⇒ (x, y) ≈ (2.6, 1.5) .
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(b) For
(

6, 3π
4

)
we have r = 6 and θ = 3π

4 . Hence,

x = r cos θ = 6 cos
3π

4
≈ −4.24

y = r sin θ = 6 sin
3π

4
≈ 4.24

⇒ (x, y) ≈ (−4.24, 4.24) .

(c) For
(
0, π

5

)
, we have r = 0, so that the rectangular coordinates are (x, y) = (0, 0).

(d) Since r = 5 and θ = −π
2 we have

x = r cos θ = 5 cos
(
−π

2

)
= 5 · 0 = 0

y = r sin θ = 5 sin
(
−π

2

)
= 5 · (−1) = −5

⇒ (x, y) = (0, −5)

6. Which of the following are possible polar coordinates for the point P with rectangular coordinates (0, −2)?

(a)
(

2,
π

2

)
(b)

(
2,

7π

2

)
(c)

(
−2, −3π

2

)
(d)

(
−2,

7π

2

)
(e)

(
−2, −π

2

)
(f)
(

2, −7π

2

)
solution The point P has distance 2 from the origin and the angle between OP and the positive x-axis in the positive

direction is 3π
2 . Hence, (r, θ) =

(
2, 3π

2

)
is one choice for the polar coordinates for P .

y

x

P

0

3π 
2

The polar coordinates (2, θ) are possible for P if θ − 3π
2 is a multiple of 2π . The polar coordinate (−2, θ) are possible

for P if θ − 3π
2 is an odd multiple of π . These considerations lead to the following conclusions:

(a)
(
2, π

2

)
π
2 − 3π

2 = −π ⇒ (
2, π

2

)
does not represent P.

(b)
(

2, 7π
2

)
7π
2 − 3π

2 = 2π ⇒
(

2, 7π
2

)
represents P.

(c)
(
−2, − 3π

2

)
− 3π

2 − 3π
2 = −3π ⇒

(
−2, − 3π

2

)
represents P.

(d)
(
−2, 7π

2

)
7π
2 − 3π

2 = 2π ⇒
(
−2, 7π

2

)
does not represent P.

(e)
(−2, −π

2

) −π
2 − 3π

2 = −2π ⇒ (−2, −π
2

)
does not represent P.

(f)
(

2, − 7π
2

)
− 7π

2 − 3π
2 = −5π ⇒

(
2, − 7π

2

)
does not represent P.

7. Describe each shaded sector in Figure 17 by inequalities in r and θ .

(A) (B) (C)

x x x

y y y

3 5 3 5 3 5

45°

FIGURE 17

solution
(a) In the sector shown below r is varying between 0 and 3 and θ is varying between π and 2π . Hence the following
inequalities describe the sector:

0 ≤ r ≤ 3

π ≤ θ ≤ 2π
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(b) In the sector shown below r is varying between 0 and 3 and θ is varying between π
4 and π

2 . Hence, the inequalities
for the sector are:

0 ≤ r ≤ 3
π

4
≤ θ ≤ π

2

(c) In the sector shown below r is varying between 3 and 5 and θ is varying between 3π
4 and π . Hence, the inequalities

are:

3 ≤ r ≤ 5

3π

4
≤ θ ≤ π

8. Find the equation in polar coordinates of the line through the origin with slope 1
2 .

solution A line of slope m = 1
2 makes an angle θ0 = tan−1 1

2 ≈ 0.46 with the positive x-axis. The equation of the
line is θ ≈ 0.46, while r is arbitrary.

9. What is the slope of the line θ = 3π
5 ?

solution This line makes an angle θ0 = 3π
5 with the positive x-axis, hence the slope of the line is m = tan 3π

5 ≈ −3.1.

10. Which of r = 2 sec θ and r = 2 csc θ defines a horizontal line?

solution The equation r = 2 csc θ is the polar equation of a horizontal line, as it can be written as r = 2/ sin θ , so
r sin θ = 2, which becomes y = 2. On the other hand, the equation r = 2 sec θ is the polar equation of a vertical line, as
it can be written as r = 2/ cos θ , so r cos θ = 2, which becomes x = 2.

In Exercises 11–16, convert to an equation in rectangular coordinates.

11. r = 7

solution r = 7 describes the points having distance 7 from the origin, that is, the circle with radius 7 centered at the
origin. The equation of the circle in rectangular coordinates is

x2 + y2 = 72 = 49.

12. r = sin θ

solution Multiplying by r and substituting y = r sin θ and r2 = x2 + y2 gives

r2 = r sin θ

x2 + y2 = y

We move the y and then complete the square to obtain

x2 + y2 − y = 0

x2 +
(

y − 1

2

)2
=
(

1

2

)2

Thus, r = sin θ is the equation of a circle of radius 1
2 and center

(
0, 1

2

)
.

13. r = 2 sin θ

solution We multiply the equation by r and substitute r2 = x2 + y2, r sin θ = y. This gives

r2 = 2r sin θ

x2 + y2 = 2y

Moving the 2y and completing the square yield: x2 + y2 − 2y = 0 and x2 + (y − 1)2 = 1. Thus, r = 2 sin θ is the
equation of a circle of radius 1 centered at (0, 1).

14. r = 2 csc θ

solution We multiply the equation by sin θ and substitute y = r sin θ. We get

r sin θ = 2

y = 2

Thus, r = 2 csc θ is the equation of the line y = 2.
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15. r = 1

cos θ − sin θ

solution We multiply the equation by cos θ − sin θ and substitute y = r sin θ , x = r cos θ . This gives

r (cos θ − sin θ) = 1

r cos θ − r sin θ = 1

x − y = 1 ⇒ y = x − 1. Thus,

r = 1

cos θ − sin θ

is the equation of the line y = x − 1.

16. r = 1

2 − cos θ

solution We multiply the equation by 2 − cos θ . Then we substitute x = r cos θ and r =
√

x2 + y2, to obtain

r (2 − cos θ) = 1

2r − r cos θ = 1

2
√

x2 + y2 − x = 1

Moving the x, then squaring and simplifying, we obtain

2
√

x2 + y2 = x + 1

4
(
x2 + y2

)
= x2 + 2x + 1

3x2 − 2x + 4y2 = 1

We complete the square:

3

(
x2 − 2

3
x

)
+ 4y2 = 1

3

(
x − 1

3

)2
+ 4y2 = 4

3(
x − 1

3

)2

4
9

+ y2

1
3

= 1

This is the equation of the ellipse shown in the figure:

x

y

0ππ

π 
2

1.50.5 1

3π 
2

In Exercises 17–20, convert to an equation in polar coordinates.

17. x2 + y2 = 5

solution We make the substitution x2 + y2 = r2 to obtain; r2 = 5 or r = √
5.

18. x = 5

solution Substituting x = r cos θ gives the polar equation r cos θ = 5 or r = 5 sec θ .
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19. y = x2

solution Substituting y = r sin θ and x = r cos θ yields

r sin θ = r2 cos2 θ.

Then, dividing by r cos2 θ we obtain,

sin θ

cos2 θ
= r so r = tan θ sec θ

20. xy = 1

solution We substitute x = r cos θ , y = r sin θ to obtain

(r cos θ) (r sin θ) = 1

r2 cos θ sin θ = 1

Using the identity cos θ sin θ = 1
2 sin 2θ yields

r2 · sin 2θ

2
= 1 ⇒ r2 = 2 csc 2θ.

21. Match each equation with its description.

(a) r = 2 (i) Vertical line
(b) θ = 2 (ii) Horizontal line
(c) r = 2 sec θ (iii) Circle
(d) r = 2 csc θ (iv) Line through origin

solution

(a) r = 2 describes the points 2 units from the origin. Hence, it is the equation of a circle.

(b) θ = 2 describes the points P so that OP makes an angle of θ0 = 2 with the positive x-axis. Hence, it is the equation
of a line through the origin.

(c) This is r cos θ = 2, which is x = 2, a vertical line.

(d) Converting to rectangular coordinates, we get r = 2 csc θ , so r sin θ = 2 and y = 2. This is the equation of a
horizontal line.

22. Find the values of θ in the plot of r = 4 cos θ corresponding to points A, B, C, D in Figure 18. Then indicate the
portion of the graph traced out as θ varies in the following intervals:

(a) 0 ≤ θ ≤ π
2 (b) π

2 ≤ θ ≤ π (c) π ≤ θ ≤ 3π
2

x

y

2

−2

2 4

C A

B

D

FIGURE 18 Plot of r = 4 cos θ .

solution The point A is on the x-axis hence θ = 0. The point B is in the first quadrant with x = y = 2 hence

θ = tan−1
(

2
2

)
= tan−1(1) = π

4 . The point C is at the origin. Thus,

r = 0 ⇒ 4 cos θ = 0 ⇒ θ = π

2
,

3π

2
.

The point D is in the fourth quadrant with x = 2, y = −2, hence

θ = tan−1
(−2

2

)
= tan−1(−1) = 2π − π

4
= 7π

4
.

0 ≤ θ ≤ π
2 represents the first quadrant, hence the points (r, θ) where r = 4 cos θ and 0 ≤ θ ≤ π

2 are the points on the
circle which are in the first quadrant, as shown below:



April 4, 2011

1436 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

x

y

If we insist that r ≥ 0, then since π
2 ≤ θ ≤ π represents the second quadrant and π ≤ θ ≤ 3π

2 represents the third
quadrant, and since the circle r = 4 cos θ has no points in the left xy -plane, then there are no points for (b) and (c).
However, if we allow r < 0 then (b) represents the semi-circle

x

y

and (c) like (a) represent x

y

23. Suppose that P = (x, y) has polar coordinates (r, θ). Find the polar coordinates for the points:

(a) (x, −y) (b) (−x, −y) (c) (−x, y) (d) (y, x)

solution

(a) (x, −y) is the symmetric point of (x, y) with respect to the x-axis, hence the two points have the same radial
coordinate, and the angular coordinate of (x, −y) is 2π − θ . Hence, (x, −y) = (r, 2π − θ).

y

x

2p −q
−q
q

(x, y)

(x, −y)

(b) (−x, −y) is the symmetric point of (x, y) with respect to the origin. Hence, (−x, −y) = (r, θ + π).

y

x

p +q
q

(x, y)

(−x, −y)

(c) (−x, y) is the symmetric point of (x, y) with respect to the y-axis. Hence the two points have the same radial
coordinates and the angular coordinate of (−x, y) is π − θ . Hence, (−x, y) = (r, π − θ).

q−q
p − q

y

x

(x, y)(−x, y)

(d) Let (r1, θ1) denote the polar coordinates of (y, x). Hence,

r1 =
√

y2 + x2 =
√

x2 + y2 = r

tan θ1 = x

y
= 1

y/x
= 1

tan θ
= cot θ = tan

(π

2
− θ
)
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Since the points (x, y) and (y, x) are in the same quadrant, the solution for θ1 is θ1 = π
2 − θ . We obtain the following

polar coordinates: (y, x) = (r, π
2 − θ

)
.

q

−q p
2

− q

y

x

(x, y)

(y, x)

24. Match each equation in rectangular coordinates with its equation in polar coordinates.

(a) x2 + y2 = 4 (i) r2(1 − 2 sin2 θ) = 4
(b) x2 + (y − 1)2 = 1 (ii) r(cos θ + sin θ) = 4
(c) x2 − y2 = 4 (iii) r = 2 sin θ

(d) x + y = 4 (iv) r = 2

solution

(a) Since x2 + y2 = r2, we have r2 = 4 or r = 2.
(b) Using Example 7, the equation of the circle x2 + (y − 1)2 = 1 has polar equation r = 2 sin θ .
(c) Setting x = r cos θ , y = r sin θ in x2 − y2 = 4 gives

x2 − y2 = r2 cos2 θ − r2 sin2 θ = r2
(

cos2 θ − sin2 θ
)

= 4.

We now use the identity cos2 θ − sin2 θ = 1 − 2 sin2 θ to obtain the following equation:

r2
(

1 − 2 sin2 θ
)

= 4.

(d) Setting x = r cos θ and y = r sin θ in x + y = 4 we get:

x + y = 4

r cos θ + r sin θ = 4

so

r (cos θ + sin θ) = 4

25. What are the polar equations of the lines parallel to the line r cos
(
θ − π

3

) = 1?

solution The line r cos
(
θ − π

3

) = 1, or r = sec
(
θ − π

3

)
, is perpendicular to the ray θ = π

3 and at distance d = 1
from the origin. Hence, the lines parallel to this line are also perpendicular to the ray θ = π

3 , so the polar equations of
these lines are r = d sec

(
θ − π

3

)
or r cos

(
θ − π

3

) = d.

26. Show that the circle with center at
( 1

2 , 1
2

)
in Figure 19 has polar equation r = sin θ + cos θ and find the values of θ

between 0 and π corresponding to points A, B, C, and D.

A D

B C
x

y

(   ,    )1
2

1
2

FIGURE 19 Plot of r = sin θ + cos θ .
solution We show that the rectangular equation of r = sin θ + cos θ is(

x − 1

2

)2
+
(

y − 1

2

)2
= 1

2
.

We multiply the polar equation by r and substitute r2 = x2 + y2, r sin θ = y, r cos θ = x. This gives

r = sin θ + cos θ

r2 = r sin θ + r cos θ

x2 + y2 = y + x



April 4, 2011

1438 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

Transferring sides and completing the square yields

x2 − x + y2 − y = 0(
x − 1

2

)2
+
(

y − 1

2

)2
= 1

4
+ 1

4
= 1

2

Clearly point C corresponds to θ = 0 since cos 0 + sin 0 = 1. The circle is traced out counterclockwise as θ increases
to π , so A corresponds to θ = π

2 since again cos π
2 + sin π

2 = 0. Next, D clearly corresponds to θ = π
4 , and

indeed cos π
4 + sin π

4 = √
2, which is the diameter of the circle. Finally, point A corresponds to θ = 3π

4 , since there
cos θ = − sin θ .

27. Sketch the curve r = 1
2 θ (the spiral of Archimedes) for θ between 0 and 2π by plotting the points for θ =

0, π
4 , π

2 , . . . , 2π .

solution We first plot the following points (r, θ) on the spiral:

O = (0, 0) , A =
(π

8
,
π

4

)
, B =

(π

4
,
π

2

)
, C =

(
3π

8
,

3π

4

)
, D =

(π

2
, π
)

,

E =
(

5π

8
,

5π

4

)
, F =

(
3π

4
,

3π

2

)
, G =

(
7π

8
,

7π

4

)
, H = (π, 2π) .

p
4

3p
4

3p
2

5p
4

7p
4

p
2

O

D

E

A

G

C
B

0
2pp

H

F

Since r(0) = 0
2 = 0, the graph begins at the origin and moves toward the points A, B, C, D, E, F, G and H as θ varies

from θ = 0 to the other values stated above. Connecting the points in this direction we obtain the following graph for
0 ≤ θ ≤ 2π :

p
4

3p
4

3p
2

5p
4

7p
4

p
2

O

D

E

A

G

C
B

0
2pp

H

F

28. Sketch r = 3 cos θ − 1 (see Example 8).

solution We first choose some values of θ between 0 and π and mark the corresponding points on the graph. Then
we use symmetry (due to cos (2π − θ) = cos θ ) to plot the other half of the graph by reflecting the first half through the
x-axis. Since r = 3 cos θ − 1 is periodic, the entire curve is obtained as θ varies from 0 to 2π . We start with the values
θ = 0, π

6 , π
3 , π

2 , 2π
3 , 5π

6 , π , and compute the corresponding values of r:

r = 3 cos 0 − 1 = 3 − 1 = 2 ⇒ A = (2, 0)

r = 3 cos
π

6
− 1 = 3

√
3

2
− 1 ≈ 1.6 ⇒ B =

(
1.6,

π

6

)
r = 3 cos

π

3
− 1 = 3

2
− 1 = 0.5 ⇒ C =

(
0.5,

π

3

)
r = 3 cos

π

2
− 1 = 3 · 0 − 1 = −1 ⇒ D =

(
−1,

π

2

)
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r = 3 cos
2π

3
− 1 = −2.5 ⇒ E =

(
−2.5,

2π

3

)
r = 3 cos

5π

6
− 1 = −3.6 ⇒ F =

(
−3.6,

5π

6

)
r = 3 cos π − 1 = −4 ⇒ G = (−4, π)

The graph begins at the point (r, θ) = (2, 0) and moves toward the other points in this order, as θ varies from 0 to π .
Since r is negative for π

2 ≤ θ ≤ π , the curve continues into the fourth quadrant, rather than into the second quadrant. We
obtain the following graph:

0π A

BC

D

E
F

G

π 
3

π 
2

π 
6

2π 
3

5π 
6

Now we have half the curve and we use symmetry to plot the rest. Reflecting the first half through the x axis we obtain
the whole curve:

4
x

y

1

2

A

BC

D

E
F

G

29. Sketch the cardioid curve r = 1 + cos θ .

solution Since cos θ is period with period 2π , the entire curve will be traced out as θ varies from 0 to 2π . Additionally,
since cos(2π − θ) = cos(θ), we can sketch the curve for θ between 0 and π and reflect the result through the x axis to
obtain the whole curve. Use the values θ = 0, π

6 , π
4 , π

3 , π
2 , 2π

3 , 3π
4 , 5π

6 , and π :

θ r point

0 1 + cos 0 = 2 (2, 0)

π
6 1 + cos π

6 = 2+√
3

2

(
2+√

3
2 , π

6

)
π
4 1 + cos π

4 = 2+√
2

2

(
2+√

2
2 , π

4

)
π
3 1 + cos π

3 = 3
2

(
3
2 , π

3

)
π
2 1 + cos π

2 = 1
(
1, π

2

)
2π
3 1 + cos 2π

3 = 1
2

(
1
2 , 2π

3

)
3π
4 1 + cos 3π

4 = 2−√
2

2

(
2−√

2
2 , 3π

4

)
5π
6 1 + cos 5π

6 = 2−√
3

2

(
2−√

3
2 , 5π

6

)
θ = 0 corresponds to the point (2, 0), and the graph moves clockwise as θ increases from 0 to π . Thus the graph is

5π

6

3π

4

2π

3

π

2 π

π

3 π

4
π

6

0

Reflecting through the x axis gives the other half of the curve:
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−1

−1

1

2

y

x

−2

1 2

30. Show that the cardioid of Exercise 29 has equation

(x2 + y2 − x)2 = x2 + y2

in rectangular coordinates.

solution Multiply through by r and substitute for r , r2, and r cos θ to get

r = 1 + cos θ

r2 = r + r cos θ

x2 + y2 =
√

x2 + y2 + x

x2 + y2 − x =
√

x2 + y2

(x2 + y2 − x)2 = x2 + y2

31. Figure 20 displays the graphs of r = sin 2θ in rectangular coordinates and in polar coordinates, where it is a “rose
with four petals.” Identify:

(a) The points in (B) corresponding to points A–I in (A).

(b) The parts of the curve in (B) corresponding to the angle intervals
[
0, π

2

]
,
[
π
2 , π

]
,
[
π, 3π

2

]
, and

[ 3π
2 , 2π

]
.

A C E IG

B F

D H

x

r y

(A) Graph of r as a function
       of θ, where r = sin 2θ

(B) Graph of r = sin 2θ
      in polar coordinates

π π

2
3π 2π

2

θ

FIGURE 20

solution

(a) The graph (A) gives the following polar coordinates of the labeled points:

A: θ = 0, r = 0

B: θ = π

4
, r = sin

2π

4
= 1

C: θ = π

2
, r = 0

D: θ = 3π

4
, r = sin

2 · 3π

4
= −1

E: θ = π, r = 0

F : θ = 5π

4
, r = 1

G: θ = 3π

2
, r = 0
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H : θ = 7π

4
, r = −1

I : θ = 2π, r = 0.

Since the maximal value of |r| is 1, the points with r = 1 or r = −1 are the furthest points from the origin. The corre-
sponding quadrant is determined by the value of θ and the sign of r . If r0 < 0, the point (r0, θ0) is on the ray θ = −θ0.
These considerations lead to the following identification of the points in the xy plane. Notice that A, C, G, E, and I are
the same point.

x

y

π 2π

r = 1 r = −1

B
π 
4

π 
2

5π 
4

r = −1

7π 
4

3π 
4

r = 1

=

==

= π 
4

3π 
4

7π 
4

3π 
2

5π 
4

H

F D

A,C,E,G,I

(b) We use the graph (A) to find the sign of r = sin 2θ : 0 ≤ θ ≤ π
2 ⇒ r ≥ 0 ⇒ (r, θ) is in the first quadrant.

π
2 ≤ θ ≤ π ⇒ r ≤ 0 ⇒ (r, θ) is in the fourth quadrant. π ≤ θ ≤ 3π

2 ⇒ r ≥ 0 ⇒ (r, θ) is in the third quadrant.
3π
2 ≤ θ ≤ 2π ⇒ r ≤ 0 ⇒ (r, θ) is in the second quadrant. That is,

x

y

π ≤    ≤ 3π 
2

≤    ≤ 2π3π 
2

0 ≤    ≤ π 
2

≤    ≤ ππ 
2

32. Sketch the curve r = sin 3θ . First fill in the table of r-values below and plot the corresponding points of the curve.
Notice that the three petals of the curve correspond to the angle intervals

[
0, π

3

]
,
[
π
3 , 2π

3

]
, and

[
π
3 , π

]
. Then plot r = sin 3θ

in rectangular coordinates and label the points on this graph corresponding to (r, θ) in the table.

θ 0 π
12

π
6

π
4

π
3

5π
12 · · · 11π

12 π

r

solution We compute the values of r corresponding to the given values of θ :

θ = 0, r = sin 0 = 0 (A)

θ = π

12
, r = sin

3π

12
≈ 0.71 (B)

θ = π

6
, r = sin

3π

6
= 1 (C)

θ = π

4
, r = sin

3π

4
≈ 0.71 (D)

θ = π

3
, r = sin

3π

3
= 0 (E)

θ = 5π

12
, r = sin

15π

12
≈ −0.71 (F )

θ = π

2
, r = sin

3π

2
= −1 (G)

θ = 7π

12
, r = sin

21π

12
≈ −0.71 (H)

θ = 3π

2
, r = sin

9π

2
= 0 (I )
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θ = 3π

4
, r = sin

9π

4
≈ 0.71 (J )

θ = 5π

6
, r = sin

15π

6
= 1 (K)

θ = 11π

12
, r = sin

33π

12
≈ 0.71 (L)

θ = π, r = sin 3π = 0 (M)

We plot the points on the xy -plane and join them to obtain the following curve:

pp
3

r

q
2p
3

Using the graph of r = sin 3θ we find the sign of r and determine the parts of the graph corresponding to the angle
intervals. We get

p
4

3p
4 p

6

p
12

11p
12

p
3

2p
3

5p
6

5p
12

7p
12

p
2

AM

G

H

E
BL

D

F

I

JK C

0

p
3

0 ≤ q ≤

2p
3

p
3

≤ q ≤

≤ q ≤ p2p
3

p

0 ≤ θ ≤ π
3 ⇒ r ≥ 0 ⇒ (r, θ) in the first quadrant.

r = sin 3θ π
3 ≤ θ ≤ 2π

3 ⇒ r ≤ 0 ⇒ (r, θ) in the third and fourth quadrant.

2π
3 ≤ θ ≤ π ⇒ r ≥ 0 ⇒ (r, θ) in the second quadrant.

33. Plot the cissoid r = 2 sin θ tan θ and show that its equation in rectangular coordinates is

y2 = x3

2 − x

solution Using a CAS we obtain the following curve of the cissoid:

x

y

0ππ

π 
2

31 2

3π 
2

We substitute sin θ = y
r and tan θ = y

x in r = 2 sin θ tan θ to obtain

r = 2
y

r
· y

x
.

Multiplying by rx, setting r2 = x2 + y2 and simplifying, yields

r2x = 2y2

(x2 + y2)x = 2y2
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x3 + y2x = 2y2

y2 (2 − x) = x3

so

y2 = x3

2 − x

34. Prove that r = 2a cos θ is the equation of the circle in Figure 21 using only the fact that a triangle inscribed in a circle
with one side a diameter is a right triangle.

x

y

r

2a0
q

FIGURE 21

solution Since the triangle inscribed in the circle has a diameter as one of its sides, it is a right triangle, so we may
use the definition of cosine for angles in right triangles to write

cos θ = r

2a
⇒ r = 2a cos θ.

35. Show that

r = a cos θ + b sin θ

is the equation of a circle passing through the origin. Express the radius and center (in rectangular coordinates) in terms
of a and b.

solution We multiply the equation by r and then make the substitution x = r cos θ , y = r sin θ , and r2 = x2 + y2.
This gives

r2 = ar cos θ + br sin θ

x2 + y2 = ax + by

Transferring sides and completing the square yields

x2 − ax + y2 − by = 0(
x2 − 2 · a

2
x +

(a

2

)2
)

+
(

y2 − 2 · b

2
y +

(
b

2

)2
)

=
(a

2

)2 +
(

b

2

)2

(
x − a

2

)2 +
(

y − b

2

)2
= a2 + b2

4

This is the equation of the circle with radius
√

a2+b2

2 centered at the point
(

a
2 , b

2

)
. By plugging in x = 0 and y = 0 it is

clear that the circle passes through the origin.

36. Use the previous exercise to write the equation of the circle of radius 5 and center (3, 4) in the form r = a cos θ +
b sin θ .

solution In the previous exercise we showed that r = a cos θ + b sin θ is the equation of the circle with radius
√

a2+b2

2

centered at
(

a
2 , b

2

)
. Thus, we must have

(
a

2
,
b

2

)
= (3, 4) ⇒ a

2
= 3,

b

2
= 4 ⇒ a = 6, b = 8.

The radius of the circle is
√

a2+b2

2 =
√

62+82

2 = 5. Thus, the corresponding equation is r = 6 cos θ + 8 sin θ .
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37. Use the identity cos 2θ = cos2 θ − sin2 θ to find a polar equation of the hyperbola x2 − y2 = 1.

solution We substitute x = r cos θ , y = r sin θ in x2 − y2 = 1 to obtain

r2 cos2 θ − r2 sin2 θ = 1

r2(cos2 θ − sin2 θ) = 1

Using the identity cos 2θ = cos2 θ − sin2 θ we obtain the following equation of the hyperbola:

r2 cos 2θ = 1 or r2 = sec 2θ.

38. Find an equation in rectangular coordinates for the curve r2 = cos 2θ .

solution We first use the identity cos 2θ = cos2 θ − sin2 θ to rewrite the equation of the curve as follows:

r2 = cos2 θ − sin2 θ . Multiplying by r2 and substituting r2 = x2 + y2, r cos θ = x and r sin θ = y, we get

r4 = (r cos θ)2 − (r sin θ)2(x2 + y2)2 = x2 − y2.

Thus, the curve has the equation (x2 + y2)
2 = x2 − y2 in rectangular coordinates.

39. Show that cos 3θ = cos3 θ − 3 cos θ sin2 θ and use this identity to find an equation in rectangular coordinates for the
curve r = cos 3θ .

solution We use the identities cos(α + β) = cos α cos β − sin α sin β, cos 2α = cos2 α − sin2 α, and sin 2α =
2 sin α cos α to write

cos 3θ = cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ

= (cos2 θ − sin2 θ) cos θ − 2 sin θ cos θ sin θ

= cos3 θ − sin2 θ cos θ − 2 sin2 θ cos θ

= cos3 θ − 3 sin2 θ cos θ

Using this identity we may rewrite the equation r = cos 3θ as follows:

r = cos3 θ − 3 sin2 θ cos θ (1)

Since x = r cos θ and y = r sin θ , we have cos θ = x
r and sin θ = y

r . Substituting into (1) gives:

r =
(x

r

)3 − 3
(y

r

)2 (x

r

)
r = x3

r3
− 3y2x

r3

We now multiply by r3 and make the substitution r2 = x2 + y2 to obtain the following equation for the curve:

r4 = x3 − 3y2x

(x2 + y2)
2 = x3 − 3y2x

40. Use the addition formula for the cosine to show that the line L with polar equation r cos(θ − α) = d has the equation
in rectangular coordinates (cos α)x + (sin α)y = d. Show that L has slope m = − cot α and y-intercept d/sin α.

solution We use the identity cos (a − b) = cos a cos b + sin a sin b to rewrite the equation r cos (θ − α) = d as fol-
lows:

r (cos θ cos α + sin θ sin α) = d

r cos θ cos α + r sin θ sin α = d

We now substitute r cos θ = x and r sin θ = y to obtain: x cos α + y sin α = d . Dividing by cos α, transferring sides and
simplifying yields

x + y tan α = d

cos α

y tan α = −x + d

cos α

y = − x

tan α
+ d

tan α cos α
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so

y = (− cot α) x + d

sin α

This equation of the line implies that L has slope m = − cot α and y -intercept d
sin α

.

In Exercises 41–44, find an equation in polar coordinates of the line L with the given description.

41. The point on L closest to the origin has polar coordinates
(
2, π

9

)
.

solution In Example 5, it is shown that the polar equation of the line where (r, α) is the point on the line closest to
the origin is r = d sec (θ − α). Setting (d, α) = (2, π

9

)
we obtain the following equation of the line:

r = 2 sec
(
θ − π

9

)
.

42. The point on L closest to the origin has rectangular coordinates (−2, 2).

solution We first convert the rectangular coordinates (−2, 2) to polar coordinates (d, α). This point is in the second
quadrant so π

2 < α < π . Hence,

d =
√

(−2)2 + 22 = √
8 = 2

√
2

α = tan−1
(

2

−2

)
= tan−1(−1) = π − π

4
= 3π

4

⇒ (d, α) =
(

2
√

2,
3π

4

)
.

Substituting d = 2
√

2 and α = 3π
4 in the equation r = d sec (θ − α) gives us

r = 2
√

2 sec

(
θ − 3π

4

)
.

43. L is tangent to the circle r = 2
√

10 at the point with rectangular coordinates (−2, −6).

solution

x

y

(−2, −6)

Since L is tangent to the circle at the point (−2, −6), this is the point on L closest to the center of the circle which is at
the origin. Therefore, we may use the polar coordinates (d, α) of this point in the equation of the line:

r = d sec (θ − α) (1)

We thus must convert the coordinates (−2, −6) to polar coordinates. This point is in the third quadrant so π < α < 3π
2 .

We get

d =
√

(−2)2 + (−6)2 = √
40 = 2

√
10

α = tan−1
(−6

−2

)
= tan−1 3 ≈ π + 1.25 ≈ 4.39

Substituting in (1) yields the following equation of the line:

r = 2
√

10 sec (θ − 4.39) .

44. L has slope 3 and is tangent to the unit circle in the fourth quadrant.

solution We denote the point of tangency by P0 = (1, α) (in polar coordinates).
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a

(1, a)

Since L is the tangent line to the circle at P0, P0 is the point on L closest to the center of the circle at the origin. Thus,
the polar equation of L is

r = sec (θ − α) (1)

We now must find α. Let β be the given angle shown in the figure.

a b
2p − aO B

C = (1, a)

By the given information, tan β = 3. Also, since the point of tangency is in the fourth quadrant, β must be an acute angle.
Hence

tan β = 3, 0 < β <
π

2
⇒ β = 1.25 rad.

Now, since 3π
2 < α < 2π , we have for the triangle OBC

(2π − α) + π

2
+ 1.25 = π ⇒ α = 3π

2
+ 1.25 = 5.96 rad.

Substituting into (1) we obtain the following polar equation of the tangent line:

r = sec (θ − 5.96) .

45. Show that every line that does not pass through the origin has a polar equation of the form

r = b

sin θ − a cos θ

where b �= 0.

solution Write the equation of the line in rectangular coordinates as y = ax + b. Since the line does not pass through
the origin, we have b �= 0. Substitute for y and x to convert to polar coordinates, and simplify:

y = ax + b

r sin θ = ar cos θ + b

r(sin θ − a cos θ) = b

r = b

sin θ − a cos θ

46. By the Law of Cosines, the distance d between two points (Figure 22) with polar coordinates (r, θ) and (r0, θ0) is

d2 = r2 + r2
0 − 2rr0 cos(θ − θ0)

Use this distance formula to show that

r2 − 10r cos
(
θ − π

4

)
= 56

is the equation of the circle of radius 9 whose center has polar coordinates
(
5, π

4

)
.
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x

y

(r0, q0)
r0

r

d

q0
q

(r, q )

FIGURE 22

solution The distance d between a point (r, θ) on the circle and the center (r0, θ0) = (5, π
4

)
is the radius 9. Setting

d = 9, r0 = 5 and θ0 = π
4 in the distance formula we get

d2 = r2 + r2
0 − 2rr0 cos (θ − θ0)

92 = r2 + 52 − 2 · r · 5 cos
(
θ − π

4

)
Transferring sides we get

r2 − 10r cos
(
θ − π

4

)
= 56.

47. For a > 0, a lemniscate curve is the set of points P such that the product of the distances from P to (a, 0) and
(−a, 0) is a2. Show that the equation of the lemniscate is

(x2 + y2)2 = 2a2(x2 − y2)

Then find the equation in polar coordinates. To obtain the simplest form of the equation, use the identity cos 2θ =
cos2 θ − sin2 θ . Plot the lemniscate for a = 2 if you have a computer algebra system.

solution We compute the distances d1 and d2 of P(x, y) from the points (a, 0) and (−a, 0) respectively. We obtain:

d1 =
√

(x − a)2 + (y − 0)2 =
√

(x − a)2 + y2

d2 =
√

(x + a)2 + (y − 0)2 =
√

(x + a)2 + y2

For the points P(x, y) on the lemniscate we have d1d2 = a2. That is,

a2 =
√

(x − a)2 + y2
√

(x + a)2 + y2 =
√[

(x − a)2 + y2
] [

(x + a)2 + y2
]

=
√

(x − a)2(x + a)2 + y2(x − a)2 + y2(x + a)2 + y4

=
√

(x2 − a2)2 + y2
[
(x − a)2 + (x + a)2

]+ y4

=
√

x4 − 2a2x2 + a4 + y2
(
x2 − 2xa + a2 + x2 + 2xa + a2

)+ y4

=
√

x4 − 2a2x2 + a4 + 2y2x2 + 2y2a2 + y4

=
√

x4 + 2x2y2 + y4 + 2a2(y2 − x2) + a4

=
√

(x2 + y2)
2 + 2a2(y2 − x2) + a4.

Squaring both sides and simplifying yields

a4 = (x2 + y2)2 + 2a2(y2 − x2) + a4

0 = (x2 + y2)2 + 2a2(y2 − x2)

so

(x2 + y2)2 = 2a2(x2 − y2)

We now find the equation in polar coordinates. We substitute x = r cos θ , y = r sin θ and x2 + y2 = r2 into the equation
of the lemniscate. This gives

(r2)2 = 2a2(r2 cos2 θ − r2 sin2 θ) = 2a2r2(cos2 θ − sin2 θ) = 2a2r2 cos 2θ

r4 = 2a2r2 cos 2θ
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r = 0 is a solution, hence the origin is on the curve. For r �= 0 we divide the equation by r2 to obtain r2 = 2a2 cos 2θ .
This curve also includes the origin (r = 0 is obtained for θ = π

4 for example), hence this is the polar equation of the

lemniscate. Setting a = 2 we get r2 = 8 cos 2θ .

r2 = 8 cos 2q

3p
2

p
2

p 0

48. Let c be a fixed constant. Explain the relationship between the graphs of:

(a) y = f (x + c) and y = f (x) (rectangular)

(b) r = f (θ + c) and r = f (θ) (polar)

(c) y = f (x) + c and y = f (x) (rectangular)

(d) r = f (θ) + c and r = f (θ) (polar)

solution

(a) For c > 0, y = f (x + c) shifts the graph of y = f (x) by c units to the left. If c < 0, the result is a shift to the right.
It is a horizontal translation.

y

c

x

f (x)f (x + c)

(b) As in part (a), the graph of r = f (θ + c) is a shift of the graph of r = f (θ) by c units in θ . Thus, the graph in polar
coordinates is rotated by angle c as shown in the following figure:

3p
2

p
2

p 0

f (q )

f (q + c)

c

(c) y = f (x) + c shifts the graph vertically upward by c units if c > 0, and downward by (−c) units if c < 0. It is a
vertical translation.

(d) The graph of r = f (θ) + c is a shift of the graph of r = f (θ) by c units in r . In the corresponding graph, in polar
coordinates, each point with f (θ) > 0 moves on the ray connecting it to the origin c units away from the origin if c > 0
and (−c) units toward the origin if c < 0, and vice-versa for f (θ) < 0.
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y

c

x

3p
2

p
2

p 0
1 c

c
c

c

c > 0

49. The Derivative in Polar Coordinates Show that a polar curve r = f (θ) has parametric equations

x = f (θ) cos θ, y = f (θ) sin θ

Then apply Theorem 2 of Section 11.1 to prove

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
2

where f ′(θ) = df /dθ .

solution Multiplying both sides of the given equation by cos θ yields r cos θ = f (θ) cos θ ; multiplying both sides
by sin θ yields r sin θ = f (θ) sin θ . The left-hand sides of these two equations are the x and y coordinates in rectangular
coordinates, so for any θ we have x = f (θ) cos θ and y = f (θ) sin θ , showing that the parametric equations are as
claimed. Now, by the formula for the derivative we have

dy

dx
= y′ (θ)

x′ (θ)
(1)

We differentiate the functions x = f (θ) cos θ and y = f (θ) sin θ using the Product Rule for differentiation. This gives

y′ (θ) = f ′ (θ) sin θ + f (θ) cos θ

x′ (θ) = f ′ (θ) cos θ − f (θ) sin θ

Substituting in (1) gives

dy

dx
= f ′ (θ) sin θ + f (θ) cos θ

f ′ (θ) cos θ − f (θ) sin θ
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
.

50. Use Eq. (2) to find the slope of the tangent line to r = sin θ at θ = π
3 .

solution We have f (θ) = sin θ , f ′(θ) = cos θ and, by Eq. (2), the slope of the tangent line is

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
= sin θ cos θ + cos θ sin θ

− sin2 θ + cos2 θ
= sin 2θ

cos 2θ

Evaluating at θ = π
3 gives

dy

dx
= sin 2π

3

cos 2π
3

=
√

32

−1/2
= −√

3

Thus the slope of the tangent line to r = sin θ at θ = π
3 is −√

3.

51. Use Eq. (2) to find the slope of the tangent line to r = θ at θ = π
2 and θ = π .

solution In the given curve we have r = f (θ) = θ . Using Eq. (2) we obtain the following derivative, which is the
slope of the tangent line at (r, θ).

dy

dx
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
= θ cos θ + 1 · sin θ

−θ sin θ + 1 · cos θ
(1)

The slope, m, of the tangent line at θ = π
2 and θ = π is obtained by substituting these values in (1). We get (θ = π

2 ):

m =
π
2 cos π

2 + sin π
2

−π
2 sin π

2 + cos π
2

=
π
2 · 0 + 1

−π
2 · 1 + 0

= 1

−π
2

= − 2

π
.
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(θ = π):

m = π cos π + sin π

−π sin π + cos π
= −π

−1
= π.

52. Find the equation in rectangular coordinates of the tangent line to r = 4 cos 3θ at θ = π
6 .

solution We have f (θ) = 4 cos 3θ . By Eq. (2),

m = 4 cos 3θ cos θ − 12 sin 3θ sin θ

−4 cos 3θ sin θ − 12 sin 3θ cos θ
.

Setting θ = π
6 yields

m = 4 cos
(
π
2

)
cos
(
π
6

)− 12 sin
(
π
2

)
sin
(
π
6

)
−4 cos

(
π
2

)
sin
(
π
6

)− 12 sin
(
π
2

)
cos
(
π
6

) = −12 sin π
6

−12 cos π
6

= tan
π

6
= 1√

3
.

We identify the point of tangency. For θ = π
6 we have r = 4 cos 3π

6 = 4 cos π
2 = 0. The point of tangency is the origin.

The tangent line is the line through the origin with slope 1√
3

. This is the line y = x√
3

.

53. Find the polar coordinates of the points on the lemniscate r2 = cos 2t in Figure 23 where the tangent line is horizontal.

y

x
−1 1

r2 = cos (2t)

FIGURE 23

solution This curve is defined for −π
2 ≤ 2t ≤ π

2 (where cos 2t ≥ 0), so for −π
4 ≤ t ≤ π

4 . For each θ in that range,

there are two values of r satisfying the equation (±√
cos 2t). By symmetry, we need only calculate the coordinates of the

points corresponding to the positive square root (i.e. to the right of the y axis). Then the equation becomes r = √
cos 2t .

Now, by Eq. (2), with f (t) = √
cos(2t) and f ′(t) = − sin(2t)(cos(2t))−1/2, we have

dy

dx
= f (t) cos t + f ′(t) sin t

−f (t) sin t + f ′(t) cos t
= cos t

√
cos(2t) − sin(2t) sin t (cos(2t))−1/2

− sin t
√

cos(2t) − sin(2t) cos t (cos(2t))−1/2

The tangent line is horizontal when this derivative is zero, which occurs when the numerator of the fraction is zero and the
denominator is not. Multiply top and bottom of the fraction by

√
cos(2t), and use the identities cos 2t = cos2 t − sin2 t ,

sin 2t = 2 sin t cos t to get

− cos t cos 2t − sin t sin 2t

sin t cos 2t + cos t sin 2t
= − cos t (cos2 t − 3 sin2 t)

sin t cos 2t + cos t sin 2t

The numerator is zero when cos t = 0, so when t = π
2 or t = 3π

2 , or when tan t = ± 1√
3

, so when t = ±π
6 or t = ± 5π

6 .

Of these possibilities, only t = ±π
6 lie in the range −π

4 ≤ t ≤ π
4 . Note that the denominator is nonzero for t = ±π

6 , so
these are the two values of t for which the tangent line is horizontal. The corresponding values of r are solutions to

r2 = cos
(

2 · π

6

)
= cos

(π

3

)
= 1

2

r2 = cos

(
2 · −π

6

)
= cos

(
−π

3

)
= 1

2

Finally, the four points are (r, t) =(
1√
2
,
π

6

)
,

(
− 1√

2
,
π

6

)
,

(
1√
2
, −pi

6

)
,

(
− 1√

2
, −π

6

)
If desired, we can change the second and fourth points by adding π to the angle and making r positive, to get(

1√
2
,
π

6

)
,

(
1√
2
,

7π

6

)
,

(
1√
2
, −pi

6

)
,

(
1√
2
,

5π

6

)
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54. Find the polar coordinates of the points on the cardioid r = 1 + cos θ where the tangent line is horizontal (see
Figure 24).

solution Use Eq. (2) with f (θ) = 1 + cos θ and f ′(θ) = − sin θ . Then

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
= cos θ + cos2 θ − sin2 θ

− sin θ − cos θ sin θ − sin θ cos θ
= − cos θ + cos 2θ

sin θ + sin 2θ

The tangent line is horizontal when the numerator is zero but the denominator is not. The numerator is zero when
cos θ + cos 2θ = 0. But

cos θ + cos 2θ = cos θ + 2 cos2 θ − 1 =
(

cos θ − 1

2

)
(cos θ + 1)

So for 0 ≤ θ < 2π , the numerator is zero when θ = π and when θ = ±π
3 . For the latter two points, the denominator is

nonzero, so the tangent is horizontal at the points

(r, θ) =
(

3

2
,
π

3

)
,

(
3

2
, −π

3

)
=
(

3

2
,

5π

3

)
When θ = π , both numerator and denominator vanish. However, using L’Hôpital’s Rule, we have

− lim
θ→π

cos θ + cos 2θ

sin θ + sin 2θ
= − lim

θ→π

− sin θ − 2 sin 2θ

cos θ + 2 cos 2θ
= 0

so that the tangent is defined at θ = π , and it is horizontal. Thus the tangent is also horizontal at the point

(r, θ) = (0, π)

55. Use Eq. (2) to show that for r = sin θ + cos θ ,

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ

Then calculate the slopes of the tangent lines at points A, B, C in Figure 19.

solution In Exercise 49 we proved that for a polar curve r = f (θ) the following formula holds:

dy

dx
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
(1)

For the given circle we have r = f (θ) = sin θ + cos θ , hence f ′ (θ) = cos θ − sin θ . Substituting in (1) we have

dy

dx
= (sin θ + cos θ) cos θ + (cos θ − sin θ) sin θ

− (sin θ + cos θ) sin θ + (cos θ − sin θ) cos θ
= sin θ cos θ + cos2 θ + cos θ sin θ − sin2 θ

− sin2 θ − cos θ sin θ + cos2 θ − sin θ cos θ

= cos2 θ − sin2 θ + 2 sin θ cos θ

cos2 θ − sin2 θ − 2 sin θ cos θ

We use the identities cos2 θ − sin2 θ = cos 2θ and 2 sin θ cos θ = sin 2θ to obtain

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ
(2)

The derivative dy
dx

is the slope of the tangent line at (r, θ). The slopes of the tangent lines at the points with polar coordinates

A = (1, π
2

)
B =

(
0, 3π

4

)
C = (1, 0) are computed by substituting the values of θ in (2). This gives

dy

dx

∣∣∣∣
A

= cos
(
2 · π

2

)+ sin
(
2 · π

2

)
cos
(
2 · π

2

)− sin
(
2 · π

2

) = cos π + sin π

cos π − sin π
= −1 + 0

−1 − 0
= 1

dy

dx

∣∣∣∣
B

=
cos
(

2 · 3π
4

)
+ sin

(
2 · 3π

4

)
cos
(

2 · 3π
4

)
− sin

(
2 · 3π

4

) = cos 3π
2 + sin 3π

2

cos 3π
2 − sin 3π

2

= 0 − 1

0 + 1
= −1

dy

dx

∣∣∣∣
C

= cos (2 · 0) + sin (2 · 0)

cos (2 · 0) − sin (2 · 0)
= cos 0 + sin 0

cos 0 − sin 0
= 1 + 0

1 − 0
= 1
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Further Insights and Challenges
56. Let f (x) be a periodic function of period 2π—that is, f (x) = f (x + 2π). Explain how this periodicity is
reflected in the graph of:

(a) y = f (x) in rectangular coordinates
(b) r = f (θ) in polar coordinates

solution
(a) The graph of y = f (x) on an interval of length 2π repeats itself on successive intervals of length 2π . For instance:

t

y

2

2

4

6

8

−8

−6

−4

−2
4 6 8 10 12−6 −4 −2−12−10 −8

(b) Shown below is the graph of the function above, this time drawn in polar coordinates. The graphs of the various
branches repeat themselves and are drawn one on the top of the other.

x

y

0ππ

π 
2

62 4 8

3π 
2

57. Use a graphing utility to convince yourself that the polar equations r = f1(θ) = 2 cos θ − 1 and r = f2(θ) =
2 cos θ + 1 have the same graph. Then explain why. Hint: Show that the points (f1(θ + π), θ + π) and (f2(θ), θ)

coincide.

solution The graphs of r = 2 cos θ − 1 and r = 2 cos θ + 1 in the xy -plane coincide as shown in the graph obtained
using a CAS.

x

y

2

−2

2−2

x

y

0ππ

π 
2

31 2

3π 
2

Recall that (r, θ) and (−r, θ + π) represent the same point. Replacing θ by θ + π and r by (−r) in r = 2 cos θ − 1 we
obtain

−r = 2 cos (θ + π) − 1

−r = −2 cos θ − 1

r = 2 cos θ + 1

Thus, the two equations define the same graph. (One could also convert both equations to rectangular coordinates and
note that they come out identical.)
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58. We investigate how the shape of the limaçon curve r = b + cos θ depends on the constant b (see Figure 24).

(a) Argue as in Exercise 57 to show that the constants b and −b yield the same curve.
(b) Plot the limaçon for b = 0, 0.2, 0.5, 0.8, 1 and describe how the curve changes.
(c) Plot the limaçon for b = 1.2, 1.5, 1.8, 2, 2.4 and describe how the curve changes.
(d) Use Eq. (2) to show that

dy

dx
= −

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ

(e) Find the points where the tangent line is vertical. Note that there are three cases: 0 ≤ b < 2, b = 1, and b > 2. Do
the plots constructed in (b) and (c) reflect your results?

x

y

x

y

x

y

1 2 33

1

r = 1.5 + cos q r = 2.3 + cos q r = 1 + cos q 

13 2

1

1 2

1

FIGURE 24

solution
(a) If (r, θ) is on the curve r = −b + cos θ , then so is (−r, θ + π) since they represent the same point. Thus

−r = −b + cos(θ + π)

−r = −b − cos θ

r = b + cos θ

Thus the same set of points lie on the graph of both equations, so they define the same curve.
(b)

−0.5

0.5

0

b = 0

y

x
1

−0.5

0.5

0

b = 0.2

y

x
1

−0.5

0.5

b = 0.5

y

x
1

−0.5

0.5

1

1

−1
b = 0.8

y

x

−0.5

0.5

1

1 2

−1

b = 1

y

x

For 0 < b < 1, there is a “loop” inside the curve. For b = 0, the curve is a circle, although actually for 0 ≤ θ ≤ 2π the
circle is traversed twice, so in fact the loop is as large as the circle and overlays it. When b = 1, the loop is pinched to a
point.
(c)

−0.5

0.5

1

1 2

−1

b = 1.2

y

x

−0.5

0.5

1

1.5

1 2

−1

−1.5
b = 1.5

y

x

−0.5

0.5
1

2

1.5

1 2

−1

−2

−1.5

b = 1.8

y

x

−0.5

0.5
1

2

1.5

1 2 3

−1

−2

−1.5

b = 2

y

x

1

2

1 2 3
−1

−2

b = 2.4

y

x

For b between 1 and 2, the pinch at b = 1 smooths out into a concavity in the curve, which decreases in size. By b = 2 it
appears to be gone; further increases in b push the left-hand section of the curve out, making it more convex.
(d) By Eq. (2), with f (θ) = b + cos θ and f ′(θ) = − sin θ , we have (using the double-angle identities for sin and cos)

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
= (b + cos θ) cos θ − sin2 θ

−(b + cos θ) sin θ − sin θ cos θ
= b cos θ + cos 2θ

−b sin θ − 2 sin θ cos θ

= − b cos θ + cos 2θ

sin θ(b + 2 cos θ)
= −

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ
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(e) From part (d), the tangent line is vertical when either csc θ is undefined or when b + 2 cos θ = 0 (as long as the
numerator b cos θ + cos 2θ �= 0). Consider first the case when csc θ is undefined, so that θ = 0 or θ = π . If θ = 0, the
numerator of the fraction is b + 1 �= 0 and the denominator is b + 2 �= 0, so that the tangent is vertical here.

For any b, the limaçon has a vertical tangent at (b + cos 0, 0) = (b + 1, 0)

If θ = π , the numerator of the fraction is 1 − b and the denominator is b + 2 �= 0. As long as b �= 1, the numerator does
not vanish and we have found a point of vertical tangency. If b = 1, then by L’Hôpital’s Rule,

− lim
θ→π

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ = − lim

θ→π

(
b cos θ + cos 2θ

(b + 2 cos θ) sin θ

)
= lim

θ→π

sin t + sin 2t

2 cos2 t − 2 sin2 t + cos t
= 0

so that the tangent is not vertical here. Thus

If b �= 1, the limaçon has a vertical tangent at (b + cos π, π) = (b − 1, π)

Next consider the possibility that b + 2 cos θ = 0; this happens when cos θ = − b
2 . First assume that 0 ≤ b < 2. This

equation holds for two values of θ : cos−1
(
− b

2

)
and − cos−1

(
− b

2

)
. Neither of these angles is 0 or π , so that csc θ is

defined. Additionally, the numerator is

b cos θ + cos 2θ = b cos θ + 2 cos2 θ − 1 = −b2

2
+ 2 · b2

4
− 1 = −1

so that the numerator does not vanish. Thus

For 0 ≤ b < 2, the limaçon has a vertical tangent at

(
b

2
, cos−1

(
−b

2

))
and

(
b

2
, − cos−1

(
−b

2

))
Next assume that b = 2; then cos θ = −1 holds for θ = π ; we have considered that case above. Finally assume that
b > 2; then cos θ = − b

2 has no solutions. Thus, in summary, vertical tangents of the limaçon occur as follows:

0 ≤ b < 2, b �= 1 :
(

b

2
, cos−1

(
−b

2

))
,

(
b

2
, − cos−1

(
−b

2

))
, (b − 1, π), (b + 1, 0)

b = 1 :
(

b

2
, cos−1

(
−b

2

))
,

(
b

2
, − cos−1

(
−b

2

))
, (b + 1, 0)

b ≥ 2 : (b + 1, 0), (b − 1, π)

These do correspond to the figures in parts (b) and (c).

11.4 Area and Arc Length in Polar Coordinates

Preliminary Questions
1. Polar coordinates are suited to finding the area (choose one):

(a) Under a curve between x = a and x = b.

(b) Bounded by a curve and two rays through the origin.

solution Polar coordinates are best suited to finding the area bounded by a curve and two rays through the origin. The
formula for the area in polar coordinates gives the area of this region.

2. Is the formula for area in polar coordinates valid if f (θ) takes negative values?

solution The formula for the area

1

2

∫ β

α
f (θ)2 dθ

always gives the actual (positive) area, even if f (θ) takes on negative values.
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3. The horizontal line y = 1 has polar equation r = csc θ . Which area is represented by the integral
1

2

∫ π/2

π/6
csc2 θ dθ

(Figure 12)?

(a) �ABCD (b) �ABC (c) �ACD

y

xA

D

B

C y = 1
1

3

FIGURE 12

solution This integral represents an area taken from θ = π/6 to θ = π/2, which can only be the triangle �ACD, as
seen in part (c).

Exercises
1. Sketch the area bounded by the circle r = 5 and the rays θ = π

2 and θ = π , and compute its area as an integral in
polar coordinates.

solution The region bounded by the circle r = 5 and the rays θ = π
2 and θ = π is the shaded region in the figure.

The area of the region is given by the following integral:

1

2

∫ π

π/2
r2 dθ = 1

2

∫ π

π/2
52 dθ = 25

2

(
π − π

2

)
= 25π

4

x

y
=

= π

π 
2

2. Sketch the region bounded by the line r = sec θ and the rays θ = 0 and θ = π
3 . Compute its area in two ways: as an

integral in polar coordinates and using geometry.

solution The region bounded by the line r = sec θ and the rays θ = 0 and θ = π
3 is shown here:

x = 1

r = sec q

q  = 0

p
2

p
3

q  =

Using the area in polar coordinates, the area of the region is given by the following integral:

A = 1

2

∫ π/3

0
r2 dθ = 1

2

∫ π/3

0
sec2θ dθ = 1

2
tan θ

∣∣∣∣π/3

0
= 1

2

(
tan

π

3
− tan 0

)
=

√
3

2
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We now compute the area using the formula for the area of a triangle. The equations of the lines θ = π
3 , θ = 0, and

r = sec θ in rectangular coordinates are y = √
3x, y = 0 and x = 1 respectively (see Example 5 in Section 12.3 for

the equation of the line r = sec θ ). Denoting the vertices of the triangle by O, A, B (see figure) we have O = (0, 0),

A =
(

1,
√

3
)

and B = (1, 0). The area of the triangle is thus

A = OB · AB

2
= 1 · √

3

2
=

√
3

2
.

x

A

y

O B

x = 1

y = 0

y = 3x

3. Calculate the area of the circle r = 4 sin θ as an integral in polar coordinates (see Figure 4). Be careful to choose the
correct limits of integration.

solution The equation r = 4 sin θ defines a circle of radius 2 tangent to the x-axis at the origin as shown in the figure:

= π 
2

π 
3

2π 
3

π 
6

5π 
6

x

y

= π = π

The circle is traced as θ varies from 0 to π . We use the area in polar coordinates and the identity

sin2 θ = 1

2
(1 − cos 2θ)

to obtain the following area:

A = 1

2

∫ π

0
r2 dθ = 1

2

∫ π

0
(4 sin θ)2 dθ = 8

∫ π

0
sin2 θ dθ = 4

∫ π

0
(1 − cos 2θ) dθ = 4

[
θ − sin 2θ

2

]π
0

= 4

((
π − sin 2π

2

)
− 0

)
= 4π.

4. Find the area of the shaded triangle in Figure 13 as an integral in polar coordinates. Then find the rectangular
coordinates of P and Q and compute the area via geometry.

P

Q
x

y

r = 4 sec(θ − )π

4

FIGURE 13

solution The boundary of the region is traced as θ varies from 0 to π
2 , so the area is

1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
16 sec2

(
θ − π

4

)
dθ = 8 tan

(
θ − π

4

) ∣∣∣∣π/2

0
= 8(1 + 1) = 16
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5. Find the area of the shaded region in Figure 14. Note that θ varies from 0 to π
2 .

x

y

r = θ2 + 4θ

8

1 2

FIGURE 14

solution Since θ varies from 0 to π
2 , the area is

1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
(θ2 + 4θ)2 dθ = 1

2

∫ π/2

0
θ4 + 8θ3 + 16θ2 dθ

= 1

2

(
1

5
θ5 + 2θ4 + 16

3
θ3
) ∣∣∣∣π/2

0
= π5

320
+ π4

16
+ π2

3

6. Which interval of θ -values corresponds to the the shaded region in Figure 15? Find the area of the region.

3

2

y

x

r = 3 − θ

FIGURE 15

solution We first find the interval of θ . At the origin r = 0, so θ = 3. At the endpoint on the x-axis, θ = 0. Thus, θ

varies from 0 to 3.

30

2

y

x

r = 3 − q

q  = 0
q  = 3

q  = 3

Using the area in polar coordinates we obtain

A = 1

2

∫ 3

0
r2 dθ = 1

2

∫ 3

0
(3 − θ)2 dθ = − (3 − θ)3

6

∣∣∣∣3
0

= 4.5.

7. Find the total area enclosed by the cardioid in Figure 16.

y

x
−1−2

FIGURE 16 The cardioid r = 1 − cos θ .
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solution We graph r = 1 − cos θ in r and θ (cartesian, not polar, this time):

r

1

2

2πππ 
2

3π 
2

We see that as θ varies from 0 to π , the radius r increases from 0 to 2, so we get the upper half of the cardioid (the lower
half is obtained as θ varies from π to 2π and consequently r decreases from 2 to 0). Since the cardioid is symmetric with
respect to the x-axis we may compute the upper area and double the result. Using

cos2 θ = cos 2θ + 1

2

we get

A = 2 · 1

2

∫ π

0
r2 dθ =

∫ π

0
(1 − cos θ)2 dθ =

∫ π

0

(
1 − 2 cos θ + cos2 θ

)
dθ

=
∫ π

0

(
1 − 2 cos θ + cos 2θ + 1

2

)
dθ =

∫ π

0

(
3

2
− 2 cos θ + 1

2
cos 2θ

)
dθ

= 3

2
θ − 2 sin θ + 1

4
sin 2θ

∣∣∣∣π
0

= 3π

2

The total area enclosed by the cardioid is A = 3π
2 .

8. Find the area of the shaded region in Figure 16.

solution The shaded region is traced as θ varies from 0 to π
2 . Using the formula for the area in polar coordinates we

get:

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
(1 − cos θ)2 dθ = 1

2

∫ π/2

0

(
1 − 2 cos θ + cos2 θ

)
dθ

= 1

2

∫ π/2

0

(
1 − 2 cos θ + cos 2θ + 1

2

)
dθ = 1

2

∫ π/2

0

(
3

2
− 2 cos θ + 1

2
cos 2θ

)
dθ

= 1

2

(
3θ

2
− 2 sin θ + 1

4
sin 2θ

) ∣∣∣∣π/2

0
= 1

2

((
3

2
· π

2
− 2 sin

π

2
+ 1

4
sin π

)
− 0

)

= 1

2

(
3π

4
− 2

)
= 3π

8
− 1 ≈ 0.18

9. Find the area of one leaf of the “four-petaled rose” r = sin 2θ (Figure 17). Then prove that the total area of the rose
is equal to one-half the area of the circumscribed circle.

y

x

r = sin 2θ

FIGURE 17 Four-petaled rose r = sin 2θ .
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solution We consider the graph of r = sin 2θ in cartesian and in polar coordinates:

r

A

1

−1

ππ 
4

π 
2

3π 
4

y

A

x

r = 1, θ = π

4

We see that as θ varies from 0 to π
4 the radius r is increasing from 0 to 1, and when θ varies from π

4 to π
2 , r is decreasing

back to zero. Hence, the leaf in the first quadrant is traced as θ varies from 0 to π
2 . The area of the leaf (the four leaves

have equal areas) is thus

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
sin2 2θ dθ.

Using the identity

sin2 2θ = 1 − cos 4θ

2

we get

A = 1

2

∫ π/2

0

(
1

2
− cos 4θ

2

)
dθ = 1

2

(
θ

2
− sin 4θ

8

) ∣∣∣∣π/2

0
= 1

2

((
π

4
− sin 2π

8

)
− 0

)
= π

8

The area of one leaf is A = π
8 ≈ 0.39. It follows that the area of the entire rose is π

2 . Since the “radius” of the rose (the
point where θ = π

4 ) is 1, and the circumscribed circle is tangent there, the circumscribed circle has radius 1 and thus area
π . Hence the area of the rose is half that of the circumscribed circle.

10. Find the area enclosed by one loop of the lemniscate with equation r2 = cos 2θ (Figure 18). Choose your limits of
integration carefully.

y

x
−1 1

FIGURE 18 The lemniscate r2 = cos 2θ .

solution We sketch the graph of r2 = cos 2θ in the
(
r2, θ

)
plane; for −π

4 ≤ θ ≤ π
4 :

r2

1

1− π 
4

π 
4

We see that as θ varies from −π
4 to 0, r2 increases from 0 to 1, hence r also increases from 0 to 1. Then, as θ varies from

0 to π
4 , r2, so r decreases from 1 to 0. This gives the right-hand loop of the lemniscate.

y

x

r = 0, r = π
4

r = 0, r = π
4

π

4
θ = 0
r = 1



April 4, 2011

1460 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

Therefore, the area enclosed by the right-hand loop is:

1

2

∫ π/4

−π/4
r2 dθ = 1

2

∫ π/4

−π/4
cos 2θ dθ = 1

2

sin 2θ

2

∣∣∣∣π/4

−π/4
= 1

4

(
sin

π

2
− sin

(
−π

2

))
= 1

2

11. Sketch the spiral r = θ for 0 ≤ θ ≤ 2π and find the area bounded by the curve and the first quadrant.

solution The spiral r = θ for 0 ≤ θ ≤ 2π is shown in the following figure in the xy-plane:

x

y

q = 2p,
r = 2p

q = p,
r = p

q = p /2,
r = p /2

q = 0,
r = 0

The spiral r = θ

We must compute the area of the shaded region. This region is traced as θ varies from 0 to π
2 . Using the formula for the

area in polar coordinates we get

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
θ2 dθ = 1

2

θ3

3

∣∣∣∣π/2

0
= 1

6

(π

2

)3 = π3

48

12. Find the area of the intersection of the circles r = sin θ and r = cos θ .

solution The region of intersection between the two circles is shown in the following figure:

x

y

r = cos q

r = sin q

1
2

1
2

We first find the value of θ at the point of intersection (besides the origin) of the two circles, by solving the following
equation for 0 ≤ a ≤ π

2 :

sin θ = cos θ

tan θ = 1 ⇒ θ = π

4

We now compute the area as the sum of the two areas A1 and A2, shown in the figure:

r = cos q

r = sin q

A1

A2

1
2

1
2

p
4

q =

p
2

0

Using the formula for the area in polar coordinates we get

A1 = 1

2

∫ π/2

π/4
cos2 θ dθ = 1

2

∫ π/2

π/2

(
1

2
+ 1

2
cos 2θ

)
dθ = 1

4

∫ π/2

π/2
(1 + cos 2θ) dθ

= 1

4

(
θ + sin 2θ

2

) ∣∣∣∣π/2

π/2
= 1

4

((
π

2
+ sin π

2

)
−
(

π

4
+ sin π

2
2

))
= 1

4

(
π

2
− π

4
− 1

2

)
= π

16
− 1

8
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A2 = 1

2

∫ π/4

0
sin2 θ dθ = 1

2

∫ π/4

0

(
1

2
− 1

2
cos 2θ

)
dθ = 1

4

∫ π/4

0
(1 − cos 2θ) dθ

= 1

4

(
θ − sin 2θ

2

) ∣∣∣∣π/4

0
= 1

4

((
π

4
− sin π

2
2

)
− 0

)
= π

16
− 1

8

Notice that A2 = A1 as shown in the figure due to symmetry. The total area enclosed by the two circles is the sum

A = A1 + A2 =
(

π

16
− 1

8

)
+
(

π

16
− 1

8

)
= π

8
− 1

4
≈ 0.14.

13. Find the area of region A in Figure 19.
y

x
−1 41 2

A

r = 4 cos

r = 1

FIGURE 19

solution We first find the values of θ at the points of intersection of the two circles, by solving the following equation
for −π

2 ≤ x ≤ π
2 :

4 cos θ = 1 ⇒ cos θ = 1

4
⇒ θ1 = cos−1

(
1

4

)
y

x

r = 4 cos

= −1.32

= 1.32

r = 1

We now compute the area using the formula for the area between two curves:

A = 1

2

∫ θ1

−θ1

(
(4 cos θ)2 − 12

)
dθ = 1

2

∫ θ1

−θ1

(
16 cos2 θ − 1

)
dθ

Using the identity cos2 θ = cos 2θ+1
2 we get

A = 1

2

∫ θ1

−θ1

(
16 (cos 2θ + 1)

2
− 1

)
dθ = 1

2

∫ θ1

−θ1

(8 cos 2θ + 7) dθ = 1

2
(4 sin 2θ + 7θ)

∣∣∣∣θ1

−θ1

= 4 sin 2θ1 + 7θ1 = 8 sin θ1 cos θ1 + 7θ1 = 8
√

1 − cos2 θ1 cos θ1 + 7θ1

Using the fact that cos θ1 = 1
4 we get

A =
√

15

2
+ 7cos−1

(
1

4

)
≈ 11.163

14. Find the area of the shaded region in Figure 20, enclosed by the circle r = 1
2 and a petal of the curve r = cos 3θ .

Hint: Compute the area of both the petal and the region inside the petal and outside the circle.

y

x

r = cos 3q

r = 1
2

FIGURE 20
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solution We compute the area A of the given region as the difference between the area A1 of the leaf, shown here:

r=

0.5
A1

3p
2

p
2

p 0

The area, A2, of the region inside the leaf and outside the circle, shown here:

r=

0.5
A2

3p
2

p
2

p 0

Computing A1: To determine the limits of integration we use the following graph of r = cos 3θ :

1

−1

r

q

p
2

1
2 p

6

p
9

p
3

p
2

− p
3

− p
6

−

p
9

−

r = cos 3θ

As θ varies from −π
6 to 0, r increases from 0 to 1. Then, as θ varies from 0 to π

6 , r decreases from 1 back to zero. Hence
the leaf is traced as θ varies from −π

6 to π
6 . We use the formula for the area in polar coordinates to obtain

A1 = 1

2

∫ π/6

−π/6
cos2 3θ dθ = 1

2

∫ π/6

−π/6

(
1

2
+ 1

2
cos 6θ

)
dθ = 1

4

∫ π/6

−π/6
(1 + cos 6θ) dθ

= 1

4

(
θ + sin 6θ

6

) ∣∣∣∣π/6

−π/6
= 1

4

((
π

6
+ sin π

6

)
−
(

−π

6
+ sin (−π)

6

))
= 1

4
· 2π

6
= π

12

Computing A2: The two curves intersect at the points where cos 3θ = 1
2 , that is, θ = ±π

9 (see the graph of r = cos 3θ in
the rθ -plane). Using the formula for the area between two curves we get

A2 = 1

2

∫ π/9

−π/9

(
cos2 3θ −

(
1

2

)2
)

dθ = 1

2

∫ π/9

−π/9

(
1

2
+ 1

2
cos 6θ − 1

4

)
dθ

= 1

8

∫ π/9

−π/9
(1 + 2 cos 6θ) dθ = 1

8

(
θ + sin 6θ

3

) ∣∣∣∣π/9

−π/9

= 1

8

⎛⎝(π

9
+ sin 6π

9
3

)
−
⎛⎝−π

9
+

sin
(
− 6π

9

)
3

⎞⎠⎞⎠ = 1

4

(
π

9
+

√
3

6

)
= π

36
+

√
3

24

The required area is the difference between A1 and A2, that is,

A = A1 − A2 = π

12
−
(

π

36
+

√
3

24

)
= π

18
−

√
3

24
≈ 0.102.
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15. Find the area of the inner loop of the limaçon with polar equation r = 2 cos θ − 1 (Figure 21).

21

1

−1

y

x

FIGURE 21 The limaçon r = 2 cos θ − 1.

solution We consider the graph of r = 2 cos θ − 1 in cartesian and in polar, for −π
2 ≤ x ≤ π

2 :

r

1

−1

− π 
2

π 
3

π 
3

− π 
2

y

x

− π 
3

π 
3

r = 2 cos θ − 1

As θ varies from −π
3 to 0, r increases from 0 to 1. As θ varies from 0 to π

3 , r decreases from 1 back to 0. Hence, the
inner loop of the limaçon is traced as θ varies from −π

3 to π
3 . The area of the shaded region is thus

A = 1

2

∫ π/3

−π/3
r2 dθ = 1

2

∫ π/3

−π/3
(2 cos θ − 1)2 dθ = 1

2

∫ π/3

−π/3

(
4 cos2 θ − 4 cos θ + 1

)
dθ

= 1

2

∫ π/3

−π/3
(2 (cos 2θ + 1) − 4 cos θ + 1) dθ = 1

2

∫ π/3

−π/3
(2 cos 2θ − 4 cos θ + 3) dθ

= 1

2
(sin 2θ − 4 sin θ + 3θ)

∣∣∣∣π/3

−π/3
= 1

2

((
sin

2π

3
− 4 sin

π

3
+ π

)
−
(

sin

(
−2π

3

)
− 4 sin

(
−π

3

)
− π

))

=
√

3

2
− 4

√
3

2
+ π = π − 3

√
3

2
≈ 0.54

16. Find the area of the shaded region in Figure 21 between the inner and outer loop of the limaçon r = 2 cos θ − 1.

solution The region is shown in the figure below.

1 2 3

1

−1

y

x

We use the following graph.

2

−2

−3

−1

1

r

q

p
3

p−p

p
3

−

Graph of r = 2 cos θ − 1
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As θ varies from π
3 to π , r is negative and |r| increases from 0 to 3. This gives the outer loop of the limaçon which is in

the lower half plane. Similarly, the outer loop which is in the upper half plane is traced for −π ≤ θ ≤ −π
3 .

1 2 3

1

−1

y

x

p
3

≤ q  ≤ p , −3 ≤ r ≤ 0

p
3

q  = , r = 0

p
3

q  = − , r = 0 q  = −p , r = −3

q  = p , r = −3

p
3

≤ q ≤ − , −3 ≤ r ≤ 0−p

Using symmetry with respect to the x-axis, we obtain the following for the area of the outer loop:

A = 2 · 1

2

∫ π

π/3
r2 dθ =

∫ π

π/3
(2 cos θ − 1)2 dθ =

∫ π

π/3

(
4 cos2 θ − 4 cos θ + 1

)
dθ

=
∫ π

π/3
(2 (1 + cos 2θ) − 4 cos θ + 1) dθ =

∫ π

π/3
(2 cos 2θ − 4 cos θ + 3) dθ = sin 2θ − 4 sin θ + 3θ

∣∣∣∣π
π/3

= (sin 2π − 4 sin π + 3π) −
(

sin
2π

3
− 4 sin

π

3
+ π

)
= 3π −

(√
3

2
− 2

√
3 + π

)
= 2π + 3

√
3

2

Finally, to find the area of the region between the inner and outer loop of the limaçon, we subtract the area of the inner
loop, obtained in the previous exercise, from the area of the outer loop:(

2π + 3
√

3

2

)
−
(

π − 3
√

3

2

)
= π + 3

√
3

17. Find the area of the part of the circle r = sin θ + cos θ in the fourth quadrant (see Exercise 26 in Section 11.3).

solution The value of θ corresponding to the point B is the solution of r = sin θ + cos θ = 0 for −π ≤ θ ≤ π .

y

x
B A C

That is,

sin θ + cos θ = 0 ⇒ sin θ = − cos θ ⇒ tan θ = −1 ⇒ θ = −π

4

At the point C, we have θ = 0. The part of the circle in the fourth quadrant is traced if θ varies between −π
4 and 0. This

leads to the following area:

A = 1

2

∫ 0

−π/4
r2 dθ = 1

2

∫ 0

−π/4
(sin θ + cos θ)2 dθ = 1

2

∫ 0

−π/4

(
sin2 θ + 2 sin θ cos θ + cos2 θ

)
dθ

Using the identities sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ we get:

A = 1

2

∫ 0

−π/4
(1 + sin 2θ) dθ = 1

2

(
θ − cos 2θ

2

) ∣∣∣∣0−π/4

= 1

2

((
0 − 1

2

)
−
(

−π

4
− cos

(−π
2

)
2

))
= 1

2

(
π

4
− 1

2

)
= π

8
− 1

4
≈ 0.14.
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18. Find the area of the region inside the circle r = 2 sin
(
θ + π

4

)
and above the line r = sec

(
θ − π

4

)
.

solution The line r = sec
(
θ − π

4

)
intersects the circle r = 2 sin

(
θ + π

4

)
when θ = 0 and θ = 2π .

1

0.5

−0.5 0.50 1 1.5 2

1.5

2

−0.5

θ = 0

θ =

y

x

π

2

Thus the area of the region inside the circle and above the line is

1

2

∫ π/2

0

((
2 sin

(
θ + π

4

))2 −
(

sec
(
θ − π

4

))2
)

dθ = 1

2

∫ π/2

0
4 sin2

(
θ + π

4

)
− sec2

(
θ − π

4

)
dθ

= 1

2

(
2t − 2 sin

(
t + π

4

)
cos
(
t + π

4

)
− tan

(
t − π

4

)) ∣∣∣∣π/2

0

= 1

2

(
π − 2 sin

(
3π

4

)
cos

(
3π

4

)
− tan

(π

4

)
−
(
−2 sin

(π

4

)
cos
(π

4

)
− tan

(
−π

4

)))
= 1

2
(π + 1 − 1 + 1 − 1) = π

2

19. Find the area between the two curves in Figure 22(A).

y y

x x

r = 2 + cos 2q

r = 2 + sin 2q

r = sin 2q

r = sin 2q

(A) (B)

FIGURE 22

solution We compute the area A between the two curves as the difference between the area A1 of the region enclosed
in the outer curve r = 2 + cos 2θ and the area A2 of the region enclosed in the inner curve r = sin 2θ . That is,

A = A1 − A2.

y

x

A
A2

r = 2 + 2cos

r = sin 

In Exercise 9 we showed that A2 = π
2 , hence,

A = A1 − π

2
(1)

We compute the area A1.

y

x

A1
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Using symmetry, the area is four times the area enclosed in the first quadrant. That is,

A1 = 4 · 1

2

∫ π/2

0
r2 dθ = 2

∫ π/2

0
(2 + cos 2θ)2 dθ = 2

∫ π/2

0

(
4 + 4 cos 2θ + cos2 2θ

)
dθ

Using the identity cos2 2θ = 1
2 cos 4θ + 1

2 we get

A1 = 2
∫ π/2

0

(
4 + 4 cos 2θ + 1

2
cos 4θ + 1

2

)
dθ = 2

∫ π/2

0

(
9

2
+ 1

2
cos 4θ + 4 cos 2θ

)
dθ

= 2

(
9θ

2
+ sin 4θ

8
+ 2 sin 2θ

) ∣∣∣∣π/2

0
= 2

((
9π

4
+ sin 2π

8
+ 2 sin π

)
− 0

)
= 9π

2
(2)

Combining (1) and (2) we obtain

A = 9π

2
− π

2
= 4π.

20. Find the area between the two curves in Figure 22(B).

solution Since

2 + cos 2
(
θ − π

4

)
= 2 + cos

(
2θ − π

2

)
= 2 + cos

(π

2
− 2θ

)
= 2 + sin 2θ

it follows that the curve r = 2 + sin 2θ is obtained by rotating the curve r = 2 + cos θ by π
4 about the origin. Therefore

the area between the curves r = 2 + sin 2θ and r = sin 2θ is the same as the area between the curves r = 2 + cos θ and
r = sin 2θ computed in Exercise 19. That is, A = 4π . (Notice that if the inner curve remains inside the rotated curve, the
area between the curves is not changed).

21. Find the area inside both curves in Figure 23.

y

x

2 + sin 2q

2 + cos 2q

FIGURE 23

solution The area we need to find is the area of the shaded region in the figure.

y

x

A
D

C
B

r = 2 + sin 2

r = 2 + cos 2

We first find the values of θ at the points of intersection A, B, C, and D of the two curves, by solving the following
equation for −π ≤ θ ≤ π :

2 + cos 2θ = 2 + sin 2θ

cos 2θ = sin 2θ

tan 2θ = 1 ⇒ 2θ = π

4
+ πk ⇒ θ = π

8
+ πk

2

The solutions for −π ≤ θ ≤ π are

A: θ = π

8
.

B: θ = −3π

8
.

C: θ = −7π

8
.

D: θ = 5π

8
.



April 4, 2011

S E C T I O N 11.4 Area and Arc Length in Polar Coordinates 1467

Using symmetry, we compute the shaded area in the figure below and multiply it by 4:

r = 2 + cos 2

π 0π

π 
8

π 
2

π 
2

5π 
8

A1

−

A = 4 · A1 = 4 · 1

2
·
∫ 5π/8

π/8
(2 + cos 2θ)2 dθ = 2

∫ 5π/8

π/8

(
4 + 4 cos 2θ + cos2 2θ

)
dθ

= 2
∫ 5π/8

π/8

(
4 + 4 cos 2θ + 1 + cos 4θ

2

)
dθ =

∫ 5π/8

π/8
(9 + 8 cos 2θ + cos 4θ) dθ

= 9θ + 4 sin 2θ + sin 4θ

4

∣∣∣∣5π/8

π/8
= 9

(
5π

8
− π

8

)
+ 4

(
sin

5π

4
− sin

π

4

)
+ 1

4

(
sin

5π

2
− sin

π

2

)
= 9π

2
− 4

√
2

22. Find the area of the region that lies inside one but not both of the curves in Figure 23.

solution The area we need to find is the area of the shaded region in the following figure:

A1

y

x

r = 2 + sin 2q

r = 2 + cos 2q

We denote by A1 the area inside both curves. In Exercise 20 we showed that the curve r = 2 + sin 2θ is obtained by
rotating the curve r = cos 2θ by π

4 around the origin. Hence, the areas enclosed in these curves are equal. We denote it
by A2. It follows that the area A that we need to find is

A = 2A2 − 2A1 = 2 (A2 − A1) (1)

In Exercise 20 we found that A2 = 9π
2 , and in Exercise 21 we showed that A1 = 9π

2 − 4
√

2. Substituting in (1) we obtain

A = 2

(
9π

2
−
(

9π

2
− 4

√
2

))
= 8

√
2 ≈ 11.3.

23. Calculate the total length of the circle r = 4 sin θ as an integral in polar coordinates.

solution We use the formula for the arc length:

S =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ (1)

In this case, f (θ) = 4 sin θ and f ′(θ) = 4 cos θ , hence√
f (θ)2 + f ′(θ)2 =

√
(4 sin θ)2 + (4 cos θ)2 = √

16 = 4

The circle is traced as θ is varied from 0 to π . Substituting α = 0, β = π in (1) yields S = ∫ π
0 4 dθ = 4π .

2

y

x

The circle r = 4 sin θ
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24. Sketch the segment r = sec θ for 0 ≤ θ ≤ A. Then compute its length in two ways: as an integral in polar coordinates
and using trigonometry.

solution The line r = sec θ has the rectangular equation x = 1. The segment AB for 0 ≤ θ ≤ A is shown in the
figure.

1

sec A

A

y

x
D

C

Using trigonometry, the length of the segment AB is

L = AB = 0B tan A = 1 · tan A = tan A

Alternatively, we use the integral in polar coordinates with f (θ) = sec(θ) and f ′(θ) = tan θ sec θ . This gives

L =
∫ A

0

√
(sec θ)2 + (tan θ sec θ)2 dθ =

∫ A

0

√
1 + tan2θ sec θ dθ =

∫ A

0
sec2θ dθ = tan θ

∣∣∣∣A
0

= tan A.

The two answers agree, as expected.

In Exercises 25–30, compute the length of the polar curve.

25. The length of r = θ2 for 0 ≤ θ ≤ π

solution We use the formula for the arc length. In this case f (θ) = θ2, f ′(θ) = 2θ , so we obtain

S =
∫ π

0

√(
θ2
)2 + (2θ)2 dθ =

∫ π

0

√
θ4 + 4θ2 dθ =

∫ π

0
θ
√

θ2 + 4 dθ

We compute the integral using the substitution u = θ2 + 4, du = 2θ dθ . This gives

S = 1

2

∫ π2+4

4

√
u du = 1

2
· 2

3
u3/2

∣∣∣∣π2+4

4
= 1

3

((
π2 + 4

)3/2 − 43/2
)

= 1

3

((
π2 + 4

)3/2 − 8

)
≈ 14.55

26. The spiral r = θ for 0 ≤ θ ≤ A

solution We use the formula for the arc length. In this case f (θ) = θ , f ′(θ) = 1. Using integration formulas we get:

S =
∫ A

0

√
θ2 + 12 dθ =

∫ A

0

√
θ2 + 1 dθ = θ

2

√
θ2 + 1 + 1

2
ln |θ +

√
θ2 + 1|

∣∣∣∣A
0

= A

2

√
A2 + 1 + 1

2
ln |A +

√
A2 + 1|

y

x

The spiral r = θ

27. The equiangular spiral r = eθ for 0 ≤ θ ≤ 2π

solution Since f (θ) = eθ , by the formula for the arc length we have:

L =
∫ 2π

0

√
f ′(θ)2 + f (θ) dθ +

∫ 2π

0

√(
eθ
)2 + (eθ

)2
dθ =

∫ 2π

0

√
2e2θ dθ

= √
2
∫ 2π

0
eθ dθ = √

2eθ

∣∣∣∣2π

0
= √

2
(
e2π − e0

)
= √

2
(
e2π − 1

)
≈ 755.9
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28. The inner loop of r = 2 cos θ − 1 in Figure 21

solution In Exercise 15 it is shown that the inner loop of the limaçon r = 2 cos θ − 1 is traced as θ varies from −π
3

to π
3 . Also,

f (θ) = 2 cos θ − 1 and f ′ (θ) = −2 sin θ.

Using the integral for the arc length we obtain

L =
∫ π/3

−π/3

√
f (θ)2 + f ′(θ)2 dθ =

∫ π/3

−π/3

√
(2 cos θ − 1)2 + (−2 sin θ)2 dθ

=
∫ π/3

−π/3

√
4 cos2 θ − 4 cos θ + 1 + 4 sin2 θ dθ =

∫ π/3

−π/3

√
5 − 4 cos θ dθ

29. The cardioid r = 1 − cos θ in Figure 16

solution In the equation of the cardioid, f (θ) = 1 − cos θ . Using the formula for arc length in polar coordinates we
have:

L =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ (1)

We compute the integrand:√
f (θ)2 + f ′ (θ)2 =

√
(1 − cos θ)2 + (sin θ)2 =

√
1 − 2 cos θ + cos2 θ + sin2 θ = √2 (1 − cos θ)

We identify the interval of θ . Since −1 ≤ cos θ ≤ 1, every 0 ≤ θ ≤ 2π corresponds to a nonnegative value of r . Hence,
θ varies from 0 to 2π . By (1) we obtain

L =
∫ 2π

0

√
2(1 − cos θ) dθ

Now, 1 − cos θ = 2 sin2(θ/2), and on the interval 0 ≤ θ ≤ π , sin(θ/2) is nonnegative, so that
√

2(1 − cos θ) =√
4 sin2(θ/2) = 2 sin(θ/2) there. The graph is symmetric, so it suffices to compute the integral for 0 ≤ θ ≤ π , and we

have

L = 2
∫ π

0

√
2(1 − cos θ) dθ = 2

∫ π

0
2 sin(θ/2) dθ = 8 sin

θ

2

∣∣∣∣π
0

= 8

30. r = cos2 θ

solution Since cos θ = cos (−θ) and cos2 (π − θ) = cos2 θ the curve is symmetric with respect to the x and y-axis.
Therefore, we may compute the length as four times the length of the part of the curve in the first quadrant. We use the
formula for the arc length in polar coordinates. In this case, f (θ) = cos2 θ, f ′(θ) = 2 cos θ (− sin θ), so we obtain√

f (θ)2 + f ′(θ)2 =
√

cos4 θ + 4 cos2 θ sin2 θ = cos θ

√
cos2 θ+4 sin2θ

= cos θ

√
cos2 θ + sin2 θ + 3 sin2 θ = cos θ

√
1 + 3 sin2 θ

Thus,

L =
∫ π/2

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π/2

0
cos θ

√
1 + 3 sin2 θ dθ.

We compute the integral using the substitution u = √
3 sin θ we get

L = 1√
3

∫ √
3

0

√
1 + u2 du = 1√

3

(
u

2

√
1 + u2 + 1

2
ln |u +

√
1 + u2|

) ∣∣∣∣
√

3

0

= 1√
3

(√
3

2

√
1 + 3 + 1

2
ln
(√

3 + √
1 + 3

)
− 0

)
= 1 + 1

2
√

3
ln
(

2 + √
3
)
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y

x

Graph of r = cos2 θ

Thus the total length equals 4L = 4 + 2√
3

ln
(

2 + √
3
)

≈ 5.52.

In Exercises 31 and 32, express the length of the curve as an integral but do not evaluate it.

31. r = (2 − cos θ)−1, 0 ≤ θ ≤ 2π

solution We have f (θ) = (2 − cos θ)−1, f ′(θ) = −(2 − cos θ)−2 sin θ , hence,√
f 2(θ) + f ′(θ)2 =

√
(2 − cos θ)−2 + (2 − cos θ)−4 sin2 θ =

√
(2 − cos θ)−4

(
(2 − cos θ)2 + sin2 θ

)
= (2 − cos θ)−2

√
4 − 4 cos θ + cos2 θ + sin2 θ = (2 − cos θ)−2 √

5 − 4 cos θ

Using the integral for the arc length we get

L =
∫ 2π

0

√
5 − 4 cos θ(2 − cos θ)−2 dθ.

32. r = sin3 t , 0 ≤ θ ≤ 2π

solution We have f (t) = sin3 t , f ′(t) = 3 sin2 t cos t , so that√
f (t)2 + f ′(t)2 =

√
sin6 t + 9 sin4 t cos2 t = sin2 t

√
sin2 t + 9 cos2 t

= sin2 t

√
sin2 t + cos2 t + 8 cos2 t = sin2 t

√
1 + 8 cos2 t

Using the formula for arc length integral we get

L =
∫ 2π

0
sin2 t

√
1 + 8 cos2 t dt

In Exercises 33–36, use a computer algebra system to calculate the total length to two decimal places.

33. The three-petal rose r = cos 3θ in Figure 20

solution We have f (θ) = cos 3θ , f ′(θ) = −3 sin 3θ , so that√
f (θ)2 + f ′(θ)2 =

√
cos2 3θ + 9 sin2 3θ =

√
cos2 3θ + sin2 3θ + 8 sin2 3θ =

√
1 + 8 sin2 3θ

Note that the curve is traversed completely for 0 ≤ θ ≤ π . Using the arc length formula and evaluating with Maple gives

L =
∫ π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π

0

√
1 + 8 sin2 3θ dθ ≈ 6.682446608

34. The curve r = 2 + sin 2θ in Figure 23

solution We have f (θ) = 2 + sin 2θ , f ′(θ) = 2 cos 2θ , so that√
f (θ)2 + f ′(θ)2 =

√
(2 + sin 2θ)2 + 4 cos2 2θ =

√
4 + 4 sin 2θ + sin2 2θ + 4 cos2 2θ

=
√

4 + 4 sin 2θ + sin2 2θ + cos2 2θ + 3 cos2 2θ

=
√

5 + 4 sin 2θ + 3 cos2 2θ

The curve is traversed completely for 0 ≤ θ ≤ 2π . Using the arc length formula and evaluating with Maple gives

L =
∫ 2π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ 2π

0

√
f (θ)2 + f ′(θ)2 dθ ≈ 15.40375907
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35. The curve r = θ sin θ in Figure 24 for 0 ≤ θ ≤ 4π

y

x
5 5

5

10

FIGURE 24 r = θ sin θ for 0 ≤ θ ≤ 4π .

solution We have f (θ) = θ sin θ , f ′(θ) = sin θ + θ cos θ , so that√
f (θ)2 + f ′(θ)2 =

√
θ2 sin2 θ + (sin θ + θ cos θ)2 =

√
θ2 sin2 θ + sin2 θ + 2θ sin θ cos θ + θ2 cos2 θ

=
√

θ2 + sin2 θ + θ sin 2θ

using the identities sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ . Thus by the arc length formula and evaluating with
Maple, we have

L =
∫ 4π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ 4π

0

√
θ2 + sin2 θ + θ sin 2θ dθ ≈ 79.56423976

36. r = √
θ , 0 ≤ θ ≤ 4π

solution We have f (θ) = √
θ , f ′(θ) = 1

2 θ−1/2, so that

√
f (θ)2 + f ′(θ)2 =

√
θ + 1

4θ

so that by the arc length formula, evaluating with Maple, we have

L =
∫ 4π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ 4π

0

√
θ + 1

4θ
dθ ≈ 30.50125041

Further Insights and Challenges
37. Suppose that the polar coordinates of a moving particle at time t are (r(t), θ(t)). Prove that the particle’s speed is

equal to
√

(dr/dt)2 + r2(dθ/dt)2.

solution The speed of the particle in rectangular coordinates is:

ds

dt
=
√

x′(t)2 + y′(t)2 (1)

We need to express the speed in polar coordinates. The x and y coordinates of the moving particles as functions of t are

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t)

We differentiate x(t) and y(t), using the Product Rule for differentiation. We obtain (omitting the independent variable t)

x′ = r ′ cos θ − r (sin θ) θ ′

y′ = r ′ sin θ − r (cos θ) θ ′

Hence,

x′2 + y′2 = (r ′ cos θ − rθ ′ sin θ
)2 + (r ′ sin θ + rθ ′ cos θ

)2
= r ′2 cos2 θ − 2r ′rθ ′ cos θ sin θ + r2θ ′2 sin2 θ + r ′2 sin2 θ + 2r ′rθ ′ sin2 θ cos θ + r2θ ′2 cos2 θ

= r ′2 (cos2 θ + sin2 θ
)

+ r2θ ′2 (sin2 θ + cos2 θ
)

= r ′2 + r2θ ′2 (2)
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Substituting (2) into (1) we get

ds

dt
=
√

r ′2 + r2θ ′2 =
√(

dr

dt

)2
+ r2

(
dθ

dt

)2

38. Compute the speed at time t = 1 of a particle whose polar coordinates at time t are r = t , θ = t (use Exercise
37). What would the speed be if the particle’s rectangular coordinates were x = t , y = t? Why is the speed increasing in
one case and constant in the other?

solution By Exercise 37 the speed of the particle is

ds

dt
=
√(

dr

dt

)2
+ r2

(
dθ

dt

)2
(1)

In this case r = t and θ = t so dr
dt

= 1 and dθ
dt

= 1. Substituting into (1) gives the following function of the speed:

ds

dt
=
√

1 + r(t)2

The speed expressed in rectangular coordinates is

ds

dt
=
√

x′(t)2 + y′(t)2

If x = t and y = t , then x′(t) = 1 and y′(t) = 1. So the speed of the particle at time t is

ds

dt
=
√

12 + 12 = √
2

On the curve x = t , y = t the particle travels the same distance �t
√

2 for all time intervals �t , hence, it has a constant
speed. However, on the spiral r = t , θ = t the particle travels greater distances for time intervals (t, t + �t) as t increases,
hence the speed is an increasing function of t .

Δt
Δt

Δt

x

y y

x
t

t

t + Δt

t + Δt

Δt

Δt

2Δt

x = t , y = t r = t , θ = t

11.5 Conic Sections

Preliminary Questions
1. Which of the following equations defines an ellipse? Which does not define a conic section?

(a) 4x2 − 9y2 = 12 (b) −4x + 9y2 = 0

(c) 4y2 + 9x2 = 12 (d) 4x3 + 9y3 = 12

solution

(a) This is the equation of the hyperbola
(

x√
3

)2 −
(

y
2√
3

)2

= 1, which is a conic section.

(b) The equation −4x + 9y2 = 0 can be rewritten as x = 9
4y2, which defines a parabola. This is a conic section.

(c) The equation 4y2 + 9x2 = 12 can be rewritten in the form
(

y√
3

)2 +
(

x
2√
3

)2

= 1, hence it is the equation of an

ellipse, which is a conic section.

(d) This is not the equation of a conic section, since it is not an equation of degree two in x and y.
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2. For which conic sections do the vertices lie between the foci?

solution If the vertices lie between the foci, the conic section is a hyperbola.

y

x
Vertex

Vertex

Vertex

Vertex FocusFocus

F1 F2

Vertex VertexFocus Focus
x

y

F2 F1

ellipse: foci between vertices hyperbola: vertices between foci

3. What are the foci of (x

a

)2 +
(y

b

)2 = 1 if a < b?

solution If a < b the foci of the ellipse
(
x
a

)2 + ( y
b

)2 = 1 are at the points (0, c) and (0, −c) on the y-axis, where

c =
√

b2 − a2.

F1 = (0, c)

F2 = (0, −c)

y

x

b

a

(
x
a

)2 + ( y
b

)2 = 1; a < b

4. What is the geometric interpretation of b/a in the equation of a hyperbola in standard position?

solution The vertices, i.e., the points where the focal axis intersects the hyperbola, are at the points (a, 0) and (−a, 0).

The values ± b
a are the slopes of the two asymptotes of the hyperbola.

x

y
y = − x

(−a, 0) (a, 0)

b
a

y = x

b

−b

b
a

Hyperbola in standard position

Exercises
In Exercises 1–6, find the vertices and foci of the conic section.

1.
(x

9

)2 +
(y

4

)2 = 1

solution This is an ellipse in standard position with a = 9 and b = 4. Hence, c =
√

92 − 42 = √
65 ≈ 8.06. The foci

are at F1 = (−8.06, 0) and F2 = (8.06, 0), and the vertices are (9, 0) , (−9, 0), (0, 4) , (0, −4).

2.
x2

9
+ y2

4
= 1

solution Writing the equation in the from
(
x
3

)2 + ( y2 )2 = 1 we get an ellipse with a = 3 and b = 2. Hence

c =
√

32 − 22 = √
5 ≈ 2.24. The foci are at F1 = (−2.24, 0) and F2 = (2.24, 0) and the vertices are (3, 0), (−3, 0),

(0, 2), (0, −2).
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3.
(x

4

)2 −
(y

9

)2 = 1

solution This is a hyperbola in standard position with a = 4 and b = 9. Hence, c =
√

a2 + b2 = √
97 ≈ 9.85. The

foci are at (±√
97, 0) and the vertices are (±2, 0).

4.
x2

4
− y2

9
= 36

solution Putting this equation in standard form gives

( x

12

)2 −
( y

18

)2 = 1

so this is a hyperbola in standard position with a = 12 and b = 18. Thus

c =
√

a2 + b2 = 6
√

13 ≈ 21.633

The foci are at (±6
√

13, 0) and the vertices are at (±12, 0).

5.
(

x − 3

7

)2
−
(

y + 1

4

)2
= 1

solution We first consider the hyperbola
(
x
7

)2 − ( y4 )2 = 1. For this hyperbola, a = 7, b = 4 and c =
√

72 + 42 ≈
8.06. Hence, the foci are at (8.06, 0) and (−8.06, 0) and the vertices are at (7, 0) and (−7, 0). Since the given hyperbola

is obtained by translating the center of the hyperbola
(
x
7

)2 − ( y
4

)2 = 1 to the point (3, −1), the foci are at F1 =
(8.06 + 3, 0 − 1) = (11.06, −1) and F2 = (−8.06 + 3, 0 − 1) = (−5.06, −1) and the vertices are A = (7 + 3, 0 − 1) =
(10, −1) and A′ = (−7 + 3, 0 − 1) = (−4, −1).

6.
(

x − 3

4

)2
+
(

y + 1

7

)2
= 1

solution We first consider the ellipse
(
x
4

)2 + ( y7 )2 = 1. Hence, a = 4 and b = 7 so a < b and the focal axis is

vertical. c =
√

72 − 42 ≈ 5.74 hence the foci are at (0, 5.74) and (0, −5.74). The vertices are (4, 0), (−4, 0), (0, 7),
(0, −7). When we translate the ellipse so that its center is (3, −1), the points above are translated so that the new vertices
are (4 + 3, 0 − 1) = (7, −1), (−4 + 3, 0 − 1) = (−1, −1), (0 + 3, 7 − 1) = (3, 6) and (0 + 3, −7 − 1) = (3, −8). The
new foci are at (3, 4.74) and (3, −6.74).

In Exercises 7–10, find the equation of the ellipse obtained by translating (as indicated) the ellipse(
x − 8

6

)2
+
(

y + 4

3

)2
= 1

7. Translated with center at the origin

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). Thus, for our ellipse to be located at the origin, it must have equation

x2

62
+ y2

32
= 1

8. Translated with center at (−2, −12)

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). Thus, for our ellipse to have center (−2, −12), it must have equation

(x + 2)2

62
+ (y + 12)2

32
= 1
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9. Translated to the right six units

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). The original ellipse has center at (8, −4), so we want an ellipse with center (14, −4).
Thus its equation is

(x − 14)2

62
+ (y + 4)2

32
= 1

10. Translated down four units

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). The original ellipse has center at (8, −4), so we want an ellipse with center (8, −8).
Thus its equation is

(x − 8)2

62
+ (y + 8)2

32
= 1

In Exercises 11–14, find the equation of the given ellipse.

11. Vertices (±5, 0) and (0, ±7)

solution Since both sets of vertices are symmetric around the origin, the center of the ellipse is at (0, 0). We have
a = 5 and b = 7, so the equation of the ellipse is (x

5

)2 +
(y

7

)2 = 1

12. Foci (±6, 0) and focal vertices (±10, 0)

solution The equation is
(
x
a

)2 + ( y
b

)2 = 1 with a = 10. The foci are (±c, 0) with c = 6, so we use the relation

c =
√

a2 − b2 to find b:

b2 = a2 − c2 = 102 − 62 = 64 ⇒ b = 8

Therefore the equation of the ellipse is ( x

10

)2 +
(y

8

)2 = 1.

13. Foci (0, ±10) and eccentricity e = 3
5

solution Since the foci are on the y axis, this ellipse has a vertical major axis with center (0, 0), so its equation is(x

b

)2 +
(y

a

)2 = 1

We have a = c
e = 10

3/5 = 50
3 and

b =
√

a2 − c2 =
√

2500

9
− 100 = 1

3

√
2500 − 900 = 40

3

Thus the equation of the ellipse is (
x

40/3

)2
+
(

y

50/3

)2
= 1

14. Vertices (4, 0), (28, 0) and eccentricity e = 2
3

solution This ellipse has a horizontal major axis with center midway between the vertices, at (16, 0). Thus if the

center were at (0, 0), the ellipse would have vertices (±12, 0), so that a = 12 and c = ae = 12 · 2
3 = 8. Then

b =
√

a2 − c2 =
√

122 − 82 = √
80 = 4

√
5
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Finally, translating the center to (16, 0), the equation of the ellipse is(
(x − 16)

12

)2
+
(

y

4
√

5

)2
= 1

In Exercises 15–20, find the equation of the given hyperbola.

15. Vertices (±3, 0) and foci (±5, 0)

solution The equation is
(
x
a

)2 − ( y
b

)2 = 1. The vertices are (±a, 0) with a = 3 and the foci (±c, 0) with c = 5. We

use the relation c =
√

a2 + b2 to find b:

b =
√

c2 − a2 =
√

52 − 32 = √
16 = 4

Therefore, the equation of the hyperbola is (x

3

)2 −
(y

4

)2 = 1.

16. Vertices (±3, 0) and asymptotes y = ± 1
2x

solution The equation is
(
x
a

)2 − ( y
b

)2 = 1. The vertices are (±a, 0) with a = 3 and the asymptotes are y = ± b
a x

with b
a = 1

2 . Hence, b = a
2 = 3

2 so the equation of the hyperbola is

(x

3

)2 −
(

y

3/2

)2
= 1

17. Foci (±4, 0) and eccentricity e = 2

solution We have c = 4 and e = 2; from c = ae we get a = 2, and then

b =
√

c2 − a2 =
√

42 − 22 = 2
√

3

The hyperbola has center at (0, 0) and horizontal axis, so its equation is(x

2

)2 −
(

y

2
√

3

)2
= 1

18. Vertices (0, ±6) and eccentricity e = 3

solution The hyperbola has a vertical focal axis and center at (0, 0), so has equation(y

b

)2 −
(x

a

)2 = 1

b = 6 and e = 3 implies, since be = c, that c = 18, and

a =
√

c2 − b2 =
√

182 − 62 = √
288 = 12

√
2

Thus the equation of the hyperbola is (y

6

)2 −
(

x

12
√

2

)2
= 1

19. Vertices (−3, 0), (7, 0) and eccentricity e = 3

solution The center is at −3+7
2 = 2 with a horizontal focal axis, so the equation is(

x − 2

a

)2
−
(y

b

)2 = 1.

Then a = 7 − 2 = 5, and c = ae = 5 · 3 = 15. Finally,

b =
√

c2 − a2 =
√

152 − 52 = 10
√

2

so that the equation of the hyperbola is (
x − 2

5

)2
−
(

y

10
√

2

)2
= 1
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20. Vertices (0, −6), (0, 4) and foci (0, −9), (0, 7)

solution The center of the hyperbola is at −6+4
2 = −1 along the y axis; we write the equation as(
y + 1

b

)2
−
(x

a

)2 = 1

b = 5 since it is the distance from the given vertex to the center, and c = 8 since it is the distance from the foci to the
center. Then

a =
√

c2 − b2 = √
64 − 25 = √

39

so that the equation of the hyperbola is (
y + 1

5

)2
−
(

x√
39

)2
= 1

In Exercises 21–28, find the equation of the parabola with the given properties.

21. Vertex (0, 0), focus
( 1

12 , 0
)

solution Since the focus is on the x-axis rather than the y-axis, and the vertex is (0, 0), the equation is x = 1
4c

y2.

The focus is (0, c) with c = 1
12 , so the equation is

x = 1

4 · 1
12

y2 = 3y2

22. Vertex (0, 0), focus (0, 2)

solution The vertex is at (0, 0), so the equation is y = 1
4c

x2 = 1
8x2.

23. Vertex (0, 0), directrix y = −5

solution The equation is y = 1
4c

x2. The directrix is y = −c with c = 5, hence y = 1
20x2.

24. Vertex (3, 4), directrix y = −2

solution If the graph were translated to the origin, the vertex would be (0, 0) and the directrix would be translated

down 4 units so would be y = −6. Then c = 6 so the equation is y = 1
4c

x2 = 1
24x2. Translating back to (3, 4) gives

y = 1

24
(x − 3)2 + 4

25. Focus (0, 4), directrix y = −4

solution The focus is (0, c) with c = 4 and the directrix is y = −c with c = 4, hence the equation of the parabola is

y = 1

4c
x2 = x2

16
.

26. Focus (0, −4), directrix y = 4

solution The focus is at (0, c) with c = −4 and the directrix is y = −c with c = −4, hence the equation y = x2

4c
of

the parabola becomes y = − x2

16 . Since c < 0, the parabola is open downward.

27. Focus (2, 0), directrix x = −2

solution The focus is on the x-axis rather than on the y-axis and the directrix is a vertical line rather than horizontal
as in the parabola in standard position. Therefore, the equation of the parabola is obtained by interchanging x and y in

y = 1
4c

x2. Also, by the given information c = 2. Hence, x = 1
4c

y2 = 1
4·2y2 or x = y2

8 .

28. Focus (−2, 0), vertex (2, 0)

solution The vertex is always midway between the focus and the directrix, so the directrix must be the vertical line
x = 6, and c = −2 − 2 = −4. Since the directrix is a vertical line, the parabola is obtained by interchanging x and y in
the equation for a parabola in standard position. Finally, c = −2 − 2 = −4 is the distance from the vertex to the focus,
so the equation is

x − 2 = 1

4c
y2 = − 1

16
y2, so x = 2 − 1

16
y2
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In Exercises 29–38, find the vertices, foci, center (if an ellipse or a hyperbola), and asymptotes (if a hyperbola).

29. x2 + 4y2 = 16

solution We first divide the equation by 16 to convert it to the equation in standard form:

x2

16
+ 4y2

16
= 1 ⇒ x2

16
+ y2

4
= 1 ⇒

(x

4

)2 +
(y

2

)2 = 1

For this ellipse, a = 4 and b = 2 hence c =
√

42 − 22 = √
12 ≈ 3.5. Since a > b we have:

• The vertices are at (±4, 0), (0, ±2).
• The foci are F1 = (−3.5, 0) and F2 = (3.5, 0).
• The focal axis is the x-axis and the conjugate axis is the y-axis.
• The ellipse is centered at the origin.

30. 4x2 + y2 = 16

solution We divide the equation by 16 to rewrite it in the standard form:

4x2

16
+ y2

16
= 1 ⇒ x2

4
+ y2

16
= 1 ⇒

(x

2

)2 +
(y

4

)2 = 1

This is the equation of an ellipse with a = 2, b = 4. Since a < b the focal axis is the y-axis. Also, c =
√

42 − 22 =√
12 ≈ 3.5. We get:

• The vertices are at (±2, 0), (0, ±4).
• The foci are (0, ±3.5).
• The focal axis is the y-axis and the conjugate axis is the x-axis.
• The center is at the origin.

31.
(

x − 3

4

)2
−
(

y + 5

7

)2
= 1

solution For this hyperbola a = 4 and b = 7 so c =
√

42 + 72 = √
65 ≈ 8.06. For the standard hyperbola(

x
4

)2 − ( y7 )2 = 1, we have

• The vertices are A = (4, 0) and A′ = (−4, 0).
• The foci are F = (

√
65, 0) and F ′ = (−√

65, 0).
• The focal axis is the x-axis y = 0, and the conjugate axis is the y-axis x = 0.
• The center is at the midpoint of FF ′; that is, at the origin.
• The asymptotes y = ± b

a x are y = ± 7
4x.

The given hyperbola is a translation of the standard hyperbola, 3 units to the right and 5 units downward. Hence the
following holds:

• The vertices are at A = (7, −5) and A′ = (−1, −5).
• The foci are at F = (3 + √

65, −5) and F ′ = (3 − √
65, −5).

• The focal axis is y = −5 and the conjugate axis is x = 3.
• The center is at (3, −5).
• The asymptotes are y + 5 = ± 7

4 (x − 3).

32. 3x2 − 27y2 = 12

solution We first rewrite the equation in the standard form:

3x2

12
− 27y2

12
= 1 ⇒ x2

4
− y2

4
9

= 1 ⇒
(x

2

)2 −
(

y

2
3

)2

= 1

This is the equation of an hyperbola in standard position. We have a = 2, b = 2
3 and c =

√
22 +

(
2
3

)2 ≈ 2.1. Hence:

• The vertices are (±2, 0).
• The foci are (±2.1, 0).
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• The focal axis is the x-axis and the conjugate axis is the y-axis.
• The center is at the origin.
• The asymptotes are y = ± b

a x, that is, y = ± 1
3x.

33. 4x2 − 3y2 + 8x + 30y = 215

solution Since there is no cross term, we complete the square of the terms involving x and y separately:

4x2 − 3y2 + 8x + 30y = 4
(
x2 + 2x

)
− 3

(
y2 − 10y

)
= 4(x + 1)2 − 4 − 3(y − 5)2 + 75 = 215

Hence,

4(x + 1)2 − 3(y − 5)2 = 144

4(x + 1)2

144
− 3(y − 5)2

144
= 1(

x + 1

6

)2
−
(

y − 5√
48

)2
= 1

This is the equation of the hyperbola obtained by translating the hyperbola
(
x
6

)2 −
(

y√
48

)2 = 1 one unit to the left and

five units upwards. Since a = 6, b = √
48, we have c = √

36 + 48 = √
84 ∼ 9.2. We obtain the following table:

Standard position Translated hyperbola

vertices (6, 0), (−6, 0) (5, 5), (−7, 5)

foci (±9.2, 0) (8.2, 5), (−10.2, 5)

focal axis The x-axis y = 5

conjugate axis The y-axis x = −1

center The origin (−1, 5)

asymptotes y = ±1.15x y = −1.15x + 3.85
y = 1.15x + 6.15

34. y = 4x2

solution This is the parabola in standard position y = 1
4c

x2 with c = 1
16 . The vertex of the parabola is at the origin,

the focus is F =
(

0, 1
16

)
and the axis is the y-axis.

35. y = 4(x − 4)2

solution By Exercise 34, the parabola y = 4x2 has the vertex at the origin, the focus at
(

0, 1
16

)
and its axis is the

y-axis. Our parabola is a translation of the standard parabola four units to the right. Hence its vertex is at (4, 0), the focus

is at
(

4, 1
16

)
and its axis is the vertical line x = 4.

36. 8y2 + 6x2 − 36x − 64y + 134 = 0

solution We first identify the conic section. Since there is no cross term, we complete the square of the terms involving
x and y terms separately:

8y2 + 6x2 − 36x − 64y + 134 = 6
(
x2 − 6x

)
+ 8

(
y2 − 8y

)
+ 134

= 6(x − 3)2 − 54 + 8(y − 4)2 − 128 + 134

= 6(x − 3)2 + 8(y − 4)2 − 48

We obtain the following equation:

6(x − 3)2 + 8(y − 4)2 − 48 = 0

3(x − 3)2 + 4(y − 4)2 = 24(
x − 3√

8

)2
+
(

y − 4√
6

)2
= 1

We identify the conic as a translation of the ellipse
(

x√
8

)2 +
(

y√
6

)2 = 1, so that the center is at c = (3, 4). Since a = √
8,

b = √
6 and a > b the foci of the standard ellipse are

(
−√

2, 0
)

and
(√

2, 0
)

for
√

2 = c =
√

a2 − b2. Hence the foci
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of the translated ellipse are
(

3 − √
2, 4
)

and
(

3 + √
2, 4
)

. The vertices
(
±√

8, 0
)

and
(

0, ±√
6
)

of the standard ellipse

are translated to the points
(

3 ± √
8, 4
)

and
(

3, 4 ± √
6
)

. The focal axis is the line y = 4, and the conjugate axis is the

line x = 3.

37. 4x2 + 25y2 − 8x − 10y = 20

solution Since there are no cross terms this conic section is obtained by translating a conic section in standard position.
To identify the conic section we complete the square of the terms involving x and y separately:

4x2 + 25y2 − 8x − 10y = 4
(
x2 − 2x

)
+ 25

(
y2 − 2

5
y

)

= 4(x − 1)2 − 4 + 25

(
y − 1

5

)2
− 1

= 4(x − 1)2 + 25

(
y − 1

5

)2
− 5 = 20

Hence,

4(x − 1)2 + 25

(
y − 1

5

)2
= 25

4

25
(x − 1)2 +

(
y − 1

5

)2
= 1

(
x − 1

5
2

)2

+
(

y − 1

5

)2
= 1

This is the equation of the ellipse obtained by translating the ellipse in standard position

(
x
5
2

)2
+ y2 = 1 one unit to the

right and 1
5 unit upward. Since a = 5

2 , b = 1 we have c =
√(

5
2

)2 − 1 ≈ 2.3, so we obtain the following table:

Standard position Translated ellipse

Vertices
(
± 5

2 , 0
)

, (0, ±1)
(

1 ± 5
2 , 1

5

)
,
(

1, 1
5 ± 1

)
Foci (−2.3, 0) , (2.3, 0)

(
−1.3, 1

5

)
,
(

3.3, 1
5

)
Focal axis The x-axis y = 1

5

Conjugate axis The y-axis x = 1

Center The origin
(

1, 1
5

)
38. 16x2 + 25y2 − 64x − 200y + 64 = 0

solution There is no cross term in this equation, so the conic section is obtained by translating a conic section in
standard position. Complete the square in each variable:

−64 = 16x2 + 25y2 − 64x − 200y = 16x2 − 64x + 64 + 25y2 − 200y + 400 − 64 − 400

= 16(x2 − 4x + 4) + 25(y2 − 8y + 16) − 464 = 16(x − 2)2 + 25(y − 4)2 − 464

Collecting constants gives

16(x − 2)2 + 25(y − 4)2 = 400

and dividing through by 400 gives an ellipse whose equation in standard form is so that the curve is an ellipse whose
equation in standard form is (

x − 2

5

)2
+
(

y − 4

4

)2
= 1

Thus the center of the ellipse is (2, 4). The focal axis is y = 4, because a = 5 and b = 4 imply that the focal axis is

horizontal. Thus the conjugate axis is x = 2. c =
√

a2 − b2 = √
25 − 16 = 3. Thus

• The vertices are (2 ± 5, 4) and (2, 4 ± 4), so are (−3, 4), (7, 4), (2, 0), and (2, 8).
• The foci are (2 ± 3, 4) so are (5, 4) and (−1, 4).
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In Exercises 39–42, use the Discriminant Test to determine the type of the conic section (in each case, the equation is
nondegenerate). Plot the curve if you have a computer algebra system.

39. 4x2 + 5xy + 7y2 = 24

solution Here, D = 25 − 4 · 4 · 7 = −87, so the conic section is an ellipse.

40. x2 − 2xy + y2 + 24x − 8 = 0

solution Here, D = 4 − 4 · 1 · 1 = 0, giving us a parabola.

41. 2x2 − 8xy + 3y2 − 4 = 0

solution Here, D = 64 − 4 · 2 · 3 = 40, giving us a hyperbola.

42. 2x2 − 3xy + 5y2 − 4 = 0

solution Here, D = 9 − 4 · 2 · (5) = −31, giving us an ellipse or a circle. Since the coefficients of x2 and y2 are
different, the curve is an ellipse.

43. Show that the “conic” x2 + 3y2 − 6x + 12y + 23 = 0 has no points.

solution Complete the square in each variable separately:

−23 = x2 − 6x + 3y2 + 12y = (x2 − 6x + 9) + (3y2 + 12y + 12) − 9 − 12 = (x − 3)2 + 3(y + 2)2 − 21

Collecting constants and reversing sides gives

(x − 3)2 + 3(y + 2)2 = −2

which has no solutions since the left-hand side is a sum of two squares so is always nonnegative.

44. For which values of a does the conic 3x2 + 2y2 − 16y + 12x = a have at least one point?

solution Complete the square in each variable:

a = 3x2 + 2y2 − 16y + 12x = 3x2 + 12x + 12 + 2y2 − 16y + 32 − 12 − 32 = 3(x + 2)2 + 2(x − 4)2 − 44

so that, collecting constants,

3(x + 2)2 + 2(x − 4)2 = a + 44

The left-hand side is a sum of two squares, so is always nonnegative, so in order for the conic (ellipse) to have at least
one point, we must have a + 44 ≥ 0, or a ≥ −44.

45. Show that
b

a
=
√

1 − e2 for a standard ellipse of eccentricity e.

solution By the definition of eccentricity:

e = c

a
(1)

For the ellipse in standard position, c =
√

a2 − b2. Substituting into (1) and simplifying yields

e =
√

a2 − b2

a
=
√

a2 − b2

a2
=
√

1 −
(

b

a

)2

We square the two sides and solve for b
a :

e2 = 1 −
(

b

a

)2
⇒
(

b

a

)2
= 1 − e2 ⇒ b

a
=
√

1 − e2

46. Show that the eccentricity of a hyperbola in standard position is e =
√

1 + m2, where ±m are the slopes of the
asymptotes.

solution By the definition of eccentricity, we have:

e = c

a
(1)

For the hyperbola in standard position, c =
√

a2 + b2, by substituting in (1) we get

e =
√

a2 + b2

a
=
√

a2 + b2

a2
=
√

1 +
(

b

a

)2
(2)

The slopes of the asymptotes are ± b
a . Setting m = b

a we get

e =
√

1 + m2
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47. Explain why the dots in Figure 23 lie on a parabola. Where are the focus and directrix located?

y = −c

y = c
y = 2c
y = 3c

y

x

FIGURE 23

solution All the circles are centered at (0, c) and the kth circle has radius kc. Hence the indicated point Pk on the kth
circle has a distance kc from the point F = (0, c). The point Pk also has distance kc from the line y = −c. That is, the
indicated point on each circle is equidistant from the point F = (0, c) and the line y = −c, hence it lies on the parabola
with focus at F = (0, c) and directrix y = −c.

y = −c

(0, c) 2c

2c

3c

3c P2

P3

P1

y

x

48. Find the equation of the ellipse consisting of points P such that PF1 + PF2 = 12, where F1 = (4, 0) and
F2 = (−2, 0).

solution This is a translation one unit to the right of an ellipse in standard position with foci F1 = (3, 0) and
F2 = (−3, 0); points P on this ellipse therefore also satisfy the equation PF1 + PF2 = 12. But PF1 + PF2 = 2a

so that a = 6; since (3, 0) is a focus, c = 3, so that b =
√

a2 − c2 = √
36 − 9 = 3

√
3. The equation of the ellipse in

standard position is therefore

x2

36
+ y2

27
= 1

so that the equation of the desired ellipse is

(x − 1)2

36
+ y2

27
= 1

49. A latus rectum of a conic section is a chord through a focus parallel to the directrix. Find the area bounded by the
parabola y = x2/(4c) and its latus rectum (refer to Figure 8).

solution The directrix is y = −c, and the focus is (0, c). The chord through the focus parallel to y = −c is clearly

y = c; this line intersects the parabola when c = x2/(4c) or 4c2 = x2, so when x = ±2c. The desired area is then∫ 2c

−2c
c − 1

4c
x2 dx =

(
c x − 1

12c
x3
) ∣∣∣∣2c

−2c

= 2c2 − 8c3

12c
−
(

−2c2 − (−2c)3

12c

)
= 4c2 − 4

3
c2 = 8

3
c2

50. Show that the tangent line at a point P = (x0, y0) on the hyperbola
(x

a

)2 −
(y

b

)2 = 1 has equation

Ax − By = 1

where A = x0

a2
and B = y0

b2
.

solution The equation of the tangent line is

y − y0 = m (x − x0) ; m = dy

dx

∣∣∣∣
x=x0,y=y0

(1)



April 4, 2011

S E C T I O N 11.5 Conic Sections 1483

To find the slope m we first implicitly differentiate the equation of the hyperbola with respect to x, which gives

2
(x

a

)
· 1

a
− 2

(y

b

)
· 1

b
y′ = 0

x

a2
= y

b2
y′ ⇒ y′ = b2

a2

(
x

y

)
We substitute x = x0, y = y0 to obtain the following slope of the tangent line:

m = b2

a2

x0

y0
= x0

a2
· b2

y0
= A · 1

B
= A

B
(2)

Substituting (2) in (1) gives

y − y0 = A

B
(x − x0)

By − By0 = Ax − Ax0 ⇒ Ax − By = Ax0 − By0 (3)

Now,

Ax0 − By0 = x0

a2
x0 − y0

b2
y0 = x2

0

a2
− y2

0

b2

and the point (x0, y0) lies on the hyperbola so

x2
0

a2
− y2

0

b2
= 1,

therefore Ax0 − By0 = 1. Substituting in (3) we obtain Ax − By = 1.

In Exercises 51–54, find the polar equation of the conic with the given eccentricity and directrix, and focus at the origin.

51. e = 1
2 , x = 3

solution Substituting e = 1
2 and d = 3 in the polar equation of a conic section we obtain

r = ed

1 + e cos θ
=

1
2 · 3

1 + 1
2 cos θ

= 3

2 + cos θ
⇒ r = 3

2 + cos θ

52. e = 1
2 , x = −3

solution We use the polar equation of a conic section with e = 1
2 and d = −3 to obtain

r = ed

1 + e cos θ
=

1
2 · (−3)

1 + 1
2 cos θ

= −3

2 + cos θ
⇒ r = −3

2 + cos θ

53. e = 1, x = 4

solution We substitute e = 1 and d = 4 in the polar equation of a conic section to obtain

r = ed

1 + e cos θ
= 1 · 4

1 + 1 · cos θ
= 4

1 + cos θ
⇒ r = 4

1 + cos θ

54. e = 3
2 , x = −4

solution Substituting e = 3
2 and d = −4 in the polar equation of the conic section gives

r = ed

1 + e cos θ
=

3
2 · (−4)

1 + 3
2 cos θ

= −12

2 + 3 cos θ
⇒ r = −12

2 + 3 cos θ

In Exercises 55–58, identify the type of conic, the eccentricity, and the equation of the directrix.

55. r = 8

1 + 4 cos θ

solution Matching with the polar equation r = ed
1+e cos θ

we get ed = 8 and e = 4 yielding d = 2. Since e > 1, the
conic section is a hyperbola, having eccentricity e = 4 and directrix x = 2 (referring to the focus-directrix definition (11)).
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56. r = 8

4 + cos θ

solution To identify the values of e and d we first rewrite the equation in the form r = ed
1+e cos θ

:

r = 8

4 + cos θ
= 2

1 + 1
4 cos θ

Thus, ed = 2 and e = 1
4 , yielding d = 8. Since e < 1, the conic is an ellipse, having eccentricity e = 1

4 and directrix
x = 8.

57. r = 8

4 + 3 cos θ

solution We first rewrite the equation in the form r = ed
1+e cos θ

, obtaining

r = 2

1 + 3
4 cos θ

Hence, ed = 2 and e = 3
4 yielding d = 8

3 . Since e < 1, the conic section is an ellipse, having eccentricity e = 3
4 and

directrix x = 8
3 .

58. r = 12

4 + 3 cos θ

solution We rewrite the equation in the form of the polar equation r = ed
1+e cos θ

:

r = 12

4 + 3 cos θ
= 3

1 + 3
4 cos θ

Hence, ed = 3 and e = 3
4 which implies d = 4. Since e < 1, the conic section is an ellipse having eccentricity e = 3

4 and
directrix x = 4.

59. Find a polar equation for the hyperbola with focus at the origin, directrix x = −2, and eccentricity e = 1.2.

solution We substitute d = −2 and e = 1.2 in the polar equation r = ed
1+e cos θ

and use Exercise 40 to obtain

r = 1.2 · (−2)

1 + 1.2 cos θ
= −2.4

1 + 1.2 cos θ
= −12

5 + 6 cos θ
= 12

5 − 6 cos θ

60. Let C be the ellipse r = de/(1 + e cos θ), where e < 1. Show that the x-coordinates of the points in Figure 24 are as
follows:

Point A C F2 A′

x-coordinate
de

e + 1
− de2

1 − e2
− 2de2

1 − e2
− de

1 − e

F2

y

x
(0, 0) ACA'

FIGURE 24

solution To find the x coordinate of A we substitute θ = 0 in the polar equation r = de
1+e cos θ

. This gives

xA = r cos 0 = r = de

1 + e cos 0
= de

1 + e
(1)

The point A′ corresponds to θ = π , so

xA′ = r cos π = −r = − de

1 + e cos π
= − de

1 − e
(2)
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The center C is the midpoint of A′A. From (1) and (2) we obtain

xC = xA + xA′
2

= 1

2

(
de

1 + e
− de

1 − e

)
= de(1 − e) − de(1 + e)

2(1 + e)(1 − e)
= −de2

1 − e2
(3)

Finally, one focus is at the origin; the center C is the midpoint of F1F2. Thus

xC = xF1 + xF2

2
= 0 + xF2

2
= xF2

2
⇒ xF2 = 2xC

Using (3), we obtain

xF2 = −2de2

1 − e2

61. Find an equation in rectangular coordinates of the conic

r = 16

5 + 3 cos θ

Hint: Use the results of Exercise 60.

solution Put this equation in the form of the referenced exercise:

16

5 + 3 cos θ
=

16
5

1 + 3
5 cos θ

=
16
3 · 3

5

1 + 3
5 cos θ

so that e = 3
5 and d = 16

3 . Then the center of the ellipse has x-coordinate

− de2

1 − e2
= −

16
3 · 9

25

1 − 9
25

= −16

3
· 9

25
· 25

16
= −3

and y-coordinate 0, and A′ has x-coordinate

− de

1 − e
= −

16
3 · 3

5

1 − 3
5

= −16

3
· 3

5
· 5

2
= −8

and y-coordinate 0, so a = −3 − (−8) = 5, and the equation is(
x + 3

5

)2
+
(y

b

)2 = 1

To find b, set θ = π
2 ; then r = 16

5 . But the point corresponding to θ = π
2 lies on the y-axis, so has coordinates

(
0, 16

5

)
.

This point is on the ellipse, so that

(
0 + 3

5

)2
+
(

16
5
b

)2

= 1 ⇒ 256

25 · b2
= 16

25
⇒ 256

b2
= 16 ⇒ b = 4

and the equation is (
x + 3

5

)2
+
(y

4

)2 = 1

62. Let e > 1. Show that the vertices of the hyperbola r = de

1 + e cos θ
have x-coordinates

ed

e + 1
and

ed

e − 1
.

solution Since the focus is at the origin and the hyperbola is to the right (see figure), the two vertices have positive x

coordinates. The corresponding values of θ at the vertices are θ = 0 and θ = π . Hence, since e > 1 we obtain

xA = |r(0)| =
∣∣∣∣ de

1 + e cos 0

∣∣∣∣ = de

1 + e

xA′ = |r (π)| =
∣∣∣∣ de

1 + e cos π

∣∣∣∣ = ∣∣∣∣ de

1 − e

∣∣∣∣ = de

e − 1
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63. Kepler’s First Law states that planetary orbits are ellipses with the sun at one focus. The orbit of Pluto has eccentricity
e ≈ 0.25. Its perihelion (closest distance to the sun) is approximately 2.7 billion miles. Find the aphelion (farthest
distance from the sun).

solution We define an xy-coordinate system so that the orbit is an ellipse in standard position, as shown in the figure.

y

x
Sun

F1(c, 0)

A(a, 0)A' (−a, 0)

The aphelion is the length of A′F1, that is a + c. By the given data, we have

0.25 = e = c

a
⇒ c = 0.25a

a − c = 2.7 ⇒ c = a − 2.7

Equating the two expressions for c we get

0.25a = a − 2.7

0.75a = 2.7 ⇒ a = 2.7

0.75
= 3.6, c = 3.6 − 2.7 = 0.9

The aphelion is thus

A′F0 = a + c = 3.6 + 0.9 = 4.5 billion miles.

64. Kepler’s Third Law states that the ratio T/a3/2 is equal to a constant C for all planetary orbits around the sun, where
T is the period (time for a complete orbit) and a is the semimajor axis.

(a) Compute C in units of days and kilometers, given that the semimajor axis of the earth’s orbit is 150 × 106 km.
(b) Compute the period of Saturn’s orbit, given that its semimajor axis is approximately 1.43 × 109 km.
(c) Saturn’s orbit has eccentricity e = 0.056. Find the perihelion and aphelion of Saturn (see Exercise 63).

solution

(a) By Kepler’s Law, T
a3/2 = C. For the earth’s orbit a = 150 × 106 km and T = 365 days. Hence,

C = T

a3/2
= 365

(150 × 106)
3/2

= 365

1837.12 × 109
= 1.987 · 10−10 days/km

(b) By Kepler’s Third Law and using the constant C computed in part (a) we get

T

a3/2
= C

T

(1.43 × 109)
3/2

= 1.987 × 10−10

T = (1.987 × 10−10)(1.43 × 109)
3/2 = 10,745 days.

(c) We define the xy-coordinate system so that the orbit is in standard position (see figure). (The sun is at one focus.)

y

x
F1(c, 0)

Sun
(−a, 0)

A'
(a, 0)
A

The perihelion is a − c and the aphelion is a + c. By the given information a = 1.43 × 109 km and e = 0.056. Hence

e = c

a
⇒ 0.056 = c

1.43 × 109
⇒ c = 0.08 × 109 km

We obtain the following solutions:

perihelion = a − c = 1.43 × 109 − 0.08 × 109 = 1.35 × 109 km

aphelion = a + c = 1.43 × 109 + 0.08 × 109 = 1.51 × 109 km
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Further Insights and Challenges
65. Verify Theorem 2.

solution Let F1 = (c, 0) and F2 = (−c, 0) and let P (x, y) be an arbitrary point on the hyperbola. Then for some
constant a,

PF1 − PF2 = ±2a

y

x
F2 = (−c, 0) F1 = (c, 0)

P = (x, y)

Using the distance formula we write this as√
(x − c)2 + y2 −

√
(x + c)2 + y2 = ±2a.

Moving the second term to the right and squaring both sides gives√
(x − c)2 + y2 =

√
(x + c)2 + y2 ± 2a

(x − c)2 + y2 = (x + c)2 + y2 ± 4a

√
(x + c)2 + y2 + 4a2

(x − c)2 − (x + c)2 − 4a2 = ±4a

√
(x + c)2 + y2

xc + a2 = ±a

√
(x + c)2 + y2

We square and simplify to obtain

x2c2 + 2xca2 + a4 = a2
(
(x + c)2 + y2

)
= a2x2 + 2a2xc + a2c2 + a2y2(

c2 − a2
)

x2 − a2y2 = a2
(
c2 − a2

)
x2

a2
− y2

c2 − a2
= 1

For b =
√

c2 − a2 (or c =
√

a2 + b2) we get

x2

a2
− y2

b2
= 1 ⇒

(x

a

)2 −
(y

b

)2 = 1.

66. Verify Theorem 5 in the case 0 < e < 1. Hint: Repeat the proof of Theorem 5, but set c = d/(e−2 − 1).

solution We follow closely the proof of Theorem 5 in the book, which covered the case e > 1. This time, for
0 < e < 1, we prove that PF = ePD defines an ellipse. We choose our coordinate axes so that the focus F lies on
the x-axis with coordinates F = (c, 0) and so that the directrix is vertical, lying to the right of F at a distance d from
F . As suggested by the hint, we set c = d

e−2−1
, but since we are working towards an ellipse, we will also need to let

b =
√

a2 − c2 as opposed to the
√

c2 − a2 from the original proof of Theorem 5. Here’s the complete list of definitions:

c = d

e−2 − 1
, a = c

e
, b =

√
a2 − c2

The directrix is the line

x = c + d = c + c(e−2 − 1) = ce−2 = a

e

Now, the equation

PF = e · PD
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for the points P = (x, y), F = (c, 0), and D = (a/e, y) becomes√
(x − c)2 + y2 = e ·

√
(x − (a/e))2

Returning to the proof of Theorem 5, we see that this is the same equation that appears in the middle of the proof of the
Theorem. As seen there, this equation can be transformed into

x2

a2
− y2

a2(e2 − 1)
= 1

and this is equivalent to

x2

a2
+ y2

a2(1 − e2)
= 1

Since a2(1 − e2) = a2 − a2e2 = a2 − c2 = b2, then we obtain the equation of the ellipse

x2

a2
+ y2

b2
= 1

67. Verify that if e > 1, then Eq. (11) defines a hyperbola of eccentricity e, with its focus at the origin and directrix at
x = d.

solution The points P = (r, θ) on the hyperbola satisfy PF = ePD, e > 1. Referring to the figure we see that

PF = r, PD = d − r cos θ (1)

Hence

r = e(d − r cos θ)

r = ed − er cos θ

r(1 + e cos θ) = ed ⇒ r = ed

1 + e cos θ

F

r P

q
D

y

x

x = d

D

d − rcos q
rcos q

Remark: Equality (1) holds also for θ > π
2 . For example, in the following figure, we have

PD = d + r cos (π − θ) = d − r cos θ

y

x

P

r

dr cos (p − q )

q

x = d

D
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Reflective Property of the Ellipse In Exercises 68–70, we prove that the focal radii at a point on an ellipse make equal
angles with the tangent line L. Let P = (x0, y0) be a point on the ellipse in Figure 25 with foci F1 = (−c, 0) and
F2 = (c, 0), and eccentricity e = c/a.

R2 = (  2,    2)

R1 = (  1,    1)

1
2

y

x

P = (x0, y0)

F1 = (−c, 0) F2 = (c, 0)

L

FIGURE 25 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

68. Show that the equation of the tangent line at P is Ax + By = 1, where A = x0

a2
and B = y0

b2
.

solution The equation of the tangent line is

y − y0 = m (x − x0) ; m = dy

dx

∣∣∣∣
x=x0,y=y0

(1)

To find the slope m we implicitly differentiate the equation of the ellipse x2

a2 + y2

b2 = 1 with respect to x. We get

2x

a2
+ 2yy′

b2
= 0 ⇒ yy′

b2
= − x

a2
⇒ y′ = −b2

a2

(
x

y

)
We substitute x = x0, y = y0 to obtain the following slope of the tangent line:

m = −b2

a2

x0

y0
= − x0

a2
· b2

y0
= −A

B

Substituting in (1) and simplifying gives

y − y0 = −A

B
(x − x0)

By − By0 = −Ax + Ax0

Ax + By = Ax0 + By0

Now,

Ax0 + By0 = x2
0

a2
+ y2

0

b2
,

so we get Ax + By = 1.

69. Points R1 and R2 in Figure 25 are defined so that F1R1 and F2R2 are perpendicular to the tangent line.
(a) Show, with A and B as in Exercise 68, that

α1 + c

β1
= α2 − c

β2
= A

B

(b) Use (a) and the distance formula to show that

F1R1

F2R2
= β1

β2

(c) Use (a) and the equation of the tangent line in Exercise 68 to show that

β1 = B(1 + Ac)

A2 + B2
, β2 = B(1 − Ac)

A2 + B2

solution
(a) Since R1 = (α1, β1) and R2 = (α2, β2) lie on the tangent line at P , that is on the line Ax + By = 1, we have

Aα1 + Bβ1 = 1 and Aα2 + Bβ2 = 1

The slope of the line R1F1 is β1
α1+c and it is perpendicular to the tangent line having slope −A

B
. Similarly, the slope of

the line R2F2 is β2
α2−c and it is also perpendicular to the tangent line. Hence,

α1 + c

β1
= A

B
and

α2 − c

β2
= A

B
.
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(b) Using the distance formula, we have

R1F1
2 = (α1 + c)2 + β2

1

Thus,

R1F1
2 = β2

1

((
α1 + c

β1

)2
+ 1

)
(1)

By part (a), α1+c
β1

= A
B

. Substituting in (1) gives

R1F1
2 = β2

1

(
A2

B2
+ 1

)
(2)

Likewise,

R2F2
2 = (α2 − c)2 + β2

2 = β2
2

((
α2 − c

β2

)2
+ 1

)
(3)

but since α2−c
β2

= A
B

, substituting in (3) gives

R2F2
2 = β2

2

(
A2

B2
+ 1

)
. (4)

Dividing, we find that

R1F1
2

R2F2
2

= β2
1

β2
2

so
R1F1

R2F2
= β1

β2
,

as desired.

(c) In part (a) we showed that ⎧⎪⎨⎪⎩
Aα1 + Bβ1 = 1

β1

α1 + c
= B

A

Eliminating α1 and solving for β1 gives

β1 = B(1 + Ac)

A2 + B2
. (5)

Similarly, we have ⎧⎪⎨⎪⎩
Aα2 + Bβ2 = 1

β2

α2 − c
= B

A

Eliminating α2 and solving for β2 yields

β2 = B (1 − Ac)

A2 + B2
(6)

70. (a) Prove that PF1 = a + x0e and PF2 = a − x0e. Hint: Show that PF1
2 − PF2

2 = 4x0c. Then use the defining
property PF1 + PF2 = 2a and the relation e = c/a.

(b) Verify that
F1R1

PF1
= F2R2

PF2
.

(c) Show that sin θ1 = sin θ2. Conclude that θ1 = θ2.

solution
(a) Using the distance formula we have

PF1
2 = (x0 + c)2 + y2; PF2

2 = (x0 − c)2 + y2

Hence,

PF1
2 − PF2

2 = (x0 + c)2 + y2 − (x0 − c)2 − y2
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= (x0 + c)2 − (x0 − c)2

= x0
2 + 2x0c + c2 − x0

2 + 2x0c − c2 = 4x0c

That is, PF1
2 − PF2

2 = 4x0c. Now use the identity u2 − v2 = (u − v) (u + v) to write this as(
PF1 − PF2

) (
PF1 + PF2

) = 4x0c (1)

Since P lies on the ellipse
(
x
a

)2 + ( y
b

)2 = 1 we have

PF1 + PF2 = 2a (2)

Substituting in (1) gives (
PF1 − PF2

) · 2a = 4x0c

We divide by a and use the eccentricity e = c
a to obtain

PF1 − PF2 = 2x0e

Solve this equation together with equation (2) to see that

PF1 = a + x0e, PF2 = a − x0e

(b) Substituting the expression for β1 from Eq. (5) in Exercise 69 into Eq. (2) in Exercise 69 yields

R1F1
2 = B2(1 + Ac)2

(A2 + B2)2

(
A2

B2
+ 1

)
= B2(1 + Ac)2(A2 + B2)

(A2 + B2)2B2
= (1 + Ac)2

A2 + B2

and similarly, substituting the expression for β2 from Eq. (6) in Exercise 69 into Eq. (4) in Exercise 69 yields

R2F2
2 = B2(1 − Ac)2

(A2 + B2)2

(
A2

B2
+ 1

)
= B2(1 − Ac)2(A2 + B2)

(A2 + B2)2B2
= (1 − Ac)2

A2 + B2

Taking square roots and dividing these two formulas gives

R1F1

R2F2
=

1+Ac√
A2+B2

1−Ac√
A2+B2

= 1 + Ac

1 − Ac

Substitute c = ea and A = x0
a2 (from Exercise 68) to get

R1F1

R2F2
=

1 + x0ea

a2

1 − x0ea

a2

= 1 + x0e
a

1 − x0e
a

= a + x0e

a − x0e

But part (a) showed that PF1 = a + x0e and PF2 = a − x0e, so that

R1F1

R2F2
= PF1

PF2
⇒ R1F1

PF1
= R2F2

PF2

(c) Since R1F1
PF1

= sin θ1 and R2F2
PF2

= sin θ2, we get sin θ1 = sin θ2, which implies that θ1 = θ2 since the two angles are

acute.

71. Here is another proof of the Reflective Property.

(a) Figure 25 suggests that L is the unique line that intersects the ellipse only in the point P . Assuming this, prove that
QF1 + QF2 > PF1 + PF2 for all points Q on the tangent line other than P .

(b) Use the Principle of Least Distance (Example 6 in Section 4.7) to prove that θ1 = θ2.

solution

(a) Consider a point Q �= P on the line L (see figure). Since L intersects the ellipse in only one point, the remainder of
the line lies outside the ellipse, so that QR does not have zero length, and F2QR is a triangle. Thus

QF1 + QF2 = QR + RF1 + QF2 = RF1 + (QR + QF2) > RF1 + RF2

since the sum of lengths of two sides of a triangle exceeds the length of the third side. But since point R lies on the ellipse,
RF2 + RF2 = PF1 + PF2, and we are done.
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y

Q
R

P

x
F1 F2

(b) Consider a beam of light traveling from F1 to F2 by reflection off of the line L. By the principle of least distance,
the light takes the shortest path, which by part (a) is the path through P . By Example 6 in Section 4.7, this shortest path
has the property that the angle of incidence (θ1) is equal to the angle of reflection (θ2).

72. Show that the length QR in Figure 26 is independent of the point P .

y

x

P = (a, ca2)R

Q

y = cx2

FIGURE 26

solution We find the slope m of the tangent line at P =
(
a, ca2

)
:

m = (cx2)
′
∣∣∣∣
x=a

= 2cx

∣∣∣∣
x=a

= 2ca

The slope of the perpendicular line PQ is, thus, − 1
2ca

, and the equation of this line is

y − ca2 = − 1

2ca
(x − a) ⇒ y = − x

2ac
+ ca2 + 1

2c

The y-intercept of the line PQ is y = ca2 + 1
2c

. We now find the length QR, by computing the distance between the

points Q(0, ca2 + 1
2c

) and P(0, ca2). This gives

QR = ca2 + 1

2c
− ca2 = 1

2c

Indeed, the length QR is independent of a, i.e. it is independent of the point P .

73. Show that y = x2/4c is the equation of a parabola with directrix y = −c, focus (0, c), and the vertex at the origin,
as stated in Theorem 3.

solution The points P = (x, y) on the parabola are equidistant from F = (0, c) and the line y = −c.

y

x

y = −c

P(x, y)

F(0, c)

That is, by the distance formula, we have

PF = PD√
x2 + (y − c)2 = |y + c|

Squaring and simplifying yields

x2 + (y − c)2 = (y + c)2

x2 + y2 − 2yc + c2 = y2 + 2yc + c2

x2 − 2yc = 2yc
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x2 = 4yc ⇒ y = x2

4c

Thus, we showed that the points that are equidistant from the focus F = (0, c) and the directrix y = −c satisfy the

equation y = x2

4c
.

74. Consider two ellipses in standard position:

E1 :
(

x

a1

)2
+
(

y

b1

)2
= 1

E2 :
(

x

a2

)2
+
(

y

b2

)2
= 1

We say that E1 is similar to E2 under scaling if there exists a factor r > 0 such that for all (x, y) on E1, the point (rx, ry)

lies on E2. Show that E1 and E2 are similar under scaling if and only if they have the same eccentricity. Show that any
two circles are similar under scaling.

solution If E1 and E2 are similar under scaling, then since (a1, 0) and (0, b1) are points on the first ellipse, the

scaled points (ra1, 0) and (0, rb1) must be on the second ellipse. This implies that (ra1/a2)2 + (0/b2)2 = 1 and that
(0/a1)2 + (rb1/b2)2 = 1, which means that ra1 ± a2 and rb1 = ±b2. But, since r, a1, and a2 are all positive, then this
implies that a2 = ra1 and b2 = rb1, and so

c2 =
√

a2
2 − b2

2 = r

√
a2

1 − b2
1 = rc1.

Thus,

e2 = c2

a2
= r1c1

r1a1
= c1

a1
= e1

and so the two ellipses have the same eccentricity. On the other hand, if the two ellipses have the same eccentricity, then√√√√1 − b2
2

a2
2

= c2

a2
= e2 = e1 = c1

a1
=
√√√√1 − b2

1

a2
1

which implies √√√√1 − b2
2

a2
2

=
√√√√1 − b2

1

a2
1

and this implies that b2/a2 = ±b1/a1 and so b2/a2 = b1/a1 (recall that all constants are positive). Define r = b2/b1.
Then, b2 = rb1, but since b2/a2 = b1/a1 we get that a2 = ra1 as well. Thus, for the point (x, y) on the first ellipse, we
have that (

x

a1

)2
+
(

y

b1

)2
= 1

If we put the scaled point (rx, ry) into the second ellipse, we get(
rx

a2

)2
+
(

ry

b2

)2
=
(

rx

ra1

)2
+
(

ry

rb1

)2
=
(

x

a1

)2
+
(

y

b1

)2
= 1

which implies that E2 is a scaled version of E1. Since all circles have eccentricity 0, then they are all similar under scaling.

75. Derive Eqs. (13) and (14) in the text as follows. Write the coordinates of P with respect to the rotated axes
in Figure 21 in polar form x′ = r cos α, y′ = r sin α. Explain why P has polar coordinates (r, α + θ) with respect to the
standard x and y-axes and derive Eqs. (13) and (14) using the addition formulas for cosine and sine.

solution If the polar coordinates of P with respect to the rotated axes are (r, α), then the line from the origin to P

has length r and makes an angle of α with the rotated x-axis (the x′-axis). Since the x′-axis makes an angle of θ with the
x-axis, it follows that the line from the origin to P makes an angle of α + θ with the x-axis, so that the polar coordinates
of P with respect to the standard axes are (r, α + θ). Write (x′, y′) for the rectangular coordinates of P with respect to
the rotated axes and (x, y) for the rectangular coordinates of P with respect to the standard axes. Then

x = r cos(α + θ) = (r cos α) cos θ − (r sin α) sin θ = x′ cos θ − y′ sin θ

y = r sin(α + θ) = r sin α cos θ + r cos α sin θ = (r cos α) sin θ + (r sin α) cos θ = x′ sin θ + y′ cos θ
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76. If we rewrite the general equation of degree 2 (Eq. 12) in terms of variables x′ and y′ that are related to x and y by
Eqs. (13) and (14), we obtain a new equation of degree 2 in x′ and y′ of the same form but with different coefficients:

a′x2 + b′xy + c′y2 + d ′x + e′y + f ′ = 0

(a) Show that b′ = b cos 2θ + (c − a) sin 2θ .
(b) Show that if b �= 0, then we obtain b′ = 0 for

θ = 1

2
cot−1 a − c

b

This proves that it is always possible to eliminate the cross term bxy by rotating the axes through a suitable angle.

solution

(a) If we plug in x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ into the equation ax2 + bxy + cy2 + dx + ey + f =
0, we will get a very ugly mess. Fortunately, we only care about the x′y′ term, so we really only need to look at the
ax2 + bxy + cy2 part of the formula. In fact, we only need to pull out those terms which have an x′y′ in them. Thus

ax2 becomes a(x′ cos θ − y′ sin θ)2 = −2ax′y′ cos θ sin θ + . . .

bxy becomes b(x′ cos θ − y′ sin θ)(x′ sin θ + y′ cos θ) = bx′y′(cos2 θ − sin2 θ) + . . .

cy2 becomes c(x′ sin θ + y′ cos θ)2 = 2cx′y′ cos θ sin θ + . . .

so that

ax2 + bxy + cy2 = ((c − a)2 sin θ cos θ + b(cos2 θ − sin2 θ))x′y′ + · · · = ((c − a) sin 2θ + b cos 2θ)x′y′ + . . .

and thus b′, the coefficient of x′y′, is b cos 2θ + (c − a) sin 2θ , as desired.
(b) Setting b′ = 0, we get 0 = b cos 2θ + (c − a) sin 2θ , so b cos 2θ = (a − c) sin 2θ , so cot 2θ = a−c

b
, giving us

2θ = cot−1 a−c
b

, and thus θ = 1
2 cot−1 a−c

b
.

CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point (1, 4)?

(a) c(t) = (t2, t + 3) (b) c(t) = (t2, t − 3)

(c) c(t) = (t2, 3 − t) (d) c(t) = (t − 3, t2)

solution To check whether it passes through the point (1, 4), we solve the equations c(t) = (1, 4) for the given curves.

(a) Comparing the second coordinate of the curve and the point yields:

t + 3 = 4

t = 1

We substitute t = 1 in the first coordinate, to obtain

t2 = 12 = 1

Hence the curve passes through (1, 4).
(b) Comparing the second coordinate of the curve and the point yields:

t − 3 = 4

t = 7

We substitute t = 7 in the first coordinate to obtain

t2 = 72 = 49 �= 1

Hence the curve does not pass through (1, 4).
(c) Comparing the second coordinate of the curve and the point yields

3 − t = 4

t = −1

We substitute t = −1 in the first coordinate, to obtain

t2 = (−1)2 = 1

Hence the curve passes through (1, 4).
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(d) Comparing the first coordinate of the curve and the point yields

t − 3 = 1

t = 4

We substitute t = 4 in the second coordinate, to obtain:

t2 = 42 = 16 �= 4

Hence the curve does not pass through (1, 4).

2. Find parametric equations for the line through P = (2, 5) perpendicular to the line y = 4x − 3.

solution The line perpendicular to y = 4x − 3 at P = (2, 5) is the line of slope − 1
4 passing through P . This line has

the equation

y − 5 = −1

4
(x − 2)

A bit of calculation shows that the parametric equations of the line are

c(t) =
(

2 + t, 5 − 1

4
t

)
or

x = 2 + t

y = 5 − 1

4
t

3. Find parametric equations for the circle of radius 2 with center (1, 1). Use the equations to find the points of intersection
of the circle with the x- and y-axes.

solution Using the standard technique for parametric equations of curves, we obtain

c(t) = (1 + 2 cos t, 1 + 2 sin t)

We compare the x coordinate of c(t) to 0:

1 + 2 cos t = 0

cos t = −1

2

t = ±2π

3

Substituting in the y coordinate yields

1 + 2 sin

(
±2π

3

)
= 1 ± 2

√
3

2
= 1 ± √

3

Hence, the intersection points with the y-axis are (0, 1 ± √
3). We compare the y coordinate of c(t) to 0:

1 + 2 sin t = 0

sin t = −1

2

t = −π

6
or

7

6
π

Substituting in the x coordinates yields

1 + 2 cos
(
−π

6

)
= 1 + 2

√
3

2
= 1 + √

3

1 + 2 cos

(
7

6
π

)
= 1 − 2 cos

(π

6

)
= 1 − 2

√
3

2
= 1 − √

3

Hence, the intersection points with the x-axis are (1 ± √
3, 0).
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4. Find a parametrization c(t) of the line y = 5 − 2x such that c(0) = (2, 1).

solution The line is passing through P = (0, 5) with slope −2, hence (by one of the examples in section 12.1) it has
the parametrization

c(t) = (t, 5 − 2t)

This parametrization does not satisfy c(0) = (2, 1). We replace the parameter t by a parameter s, so that t = s + β, to
obtain another parametrization for the line:

c∗(s) = (s + β, 5 − 2(s + β)) = (s + β, 5 − 2β − 2s) (1)

We require that c∗(0) = (2, 1). That is,

c∗(0) = (β, 5 − 2β) = (2, 1)

or

β = 2

5 − 2β = 1
⇒ β = 2

Substituting in (1) gives the parametrization

c∗(s) = (s + 2, 1 − 2s)

5. Find a parametrization c(θ) of the unit circle such that c(0) = (−1, 0).

solution The unit circle has the parametrization

c(t) = (cos t, sin t)

This parametrization does not satisfy c(0) = (−1, 0). We replace the parameter t by a parameter θ so that t = θ + α, to
obtain another parametrization for the circle:

c∗(θ) = (cos(θ + α), sin(θ + α)) (1)

We need that c∗(0) = (1, 0), that is,

c∗(0) = (cos α, sin α) = (−1, 0)

Hence

cos α = −1

sin α = 0
⇒ α = π

Substituting in (1) we obtain the following parametrization:

c∗(θ) = (cos(θ + π), sin(θ + π))

6. Find a path c(t) that traces the parabolic arc y = x2 from (0, 0) to (3, 9) for 0 ≤ t ≤ 1.

solution The second coordinates of the points on the parabolic arc are the square of the first coordinates. Therefore
the points on the arc have the form:

c(t) = (αt, α2t2) (1)

We need that c(1) = (3, 9). That is,

c(1) = (α, α2) = (3, 9) ⇒ α = 3

Substituting in (1) gives the following parametrization:

c(t) = (3t, 9t2)

7. Find a path c(t) that traces the line y = 2x + 1 from (1, 3) to (3, 7) for 0 ≤ t ≤ 1.

solution Solution 1: By one of the examples in section 12.1, the line through P = (1, 3) with slope 2 has the
parametrization

c(t) = (1 + t, 3 + 2t)
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But this parametrization does not satisfy c(1) = (3, 7). We replace the parameter t by a parameter s so that t = αs + β.
We get

c∗(s) = (1 + αs + β, 3 + 2(αs + β)) = (αs + β + 1, 2αs + 2β + 3)

We need that c∗(0) = (1, 3) and c∗(1) = (3, 7). Hence,

c∗(0) = (1 + β, 3 + 2β) = (1, 3)

c∗(1) = (α + β + 1, 2α + 2β + 3) = (3, 7)

We obtain the equations

1 + β = 1

3 + 2β = 3

α + β + 1 = 3

2α + 2β + 3 = 7

⇒ β = 0, α = 2

Substituting in (1) gives

c∗(s) = (2s + 1, 4s + 3)

Solution 2: The segment from (1, 3) to (3, 7) has the following vector parametrization:

(1 − t) 〈1, 3〉 + t 〈3, 7〉 = 〈1 − t + 3t, 3(1 − t) + 7t〉 = 〈1 + 2t, 3 + 4t〉
The parametrization is thus

c(t) = (1 + 2t, 3 + 4t)

8. Sketch the graph c(t) = (1 + cos t, sin 2t) for 0 ≤ t ≤ 2π and draw arrows specifying the direction of motion.

solution From x = 1 + cos t we have x − 1 = cos t . We substitute this in the y coordinate to obtain

y = sin 2t = 2 sin t cos t = ±2
√

sin2 t cos t = ±2
√

1 − cos2 t cos t = ±2
√

1 − (x − 1)2(x − 1)

We can see that the graph is symmetric with respect to the x-axis, hence we plot the function y = 2
√

1 − (x − 1)2(x − 1)

and reflect it with respect to the x-axis. When t = 0 we have c(0) = (2, 0). when t increases near 0, cos t is decreasing
and sin 2t is increasing, hence the general direction at the point (2, 0) is upwards and left. As t approaches π/2, the
x-coordinate decreases to 1 and the y-coordinate to 0. Likewise, as t moves from π/2 to π , the x-coordinate moves to 0
while the y-coordinate falls to −1 and then rises to 0. The resulting graph is seen here in the corresponding figure.

x

y

1

−1

21

Plot of Exercise 8

In Exercises 9–12, express the parametric curve in the form y = f (x).

9. c(t) = (4t − 3, 10 − t)

solution We use the given equation to express t in terms of x.

x = 4t − 3

4t = x + 3

t = x + 3

4

Substituting in the equation of y yields

y = 10 − t = 10 − x + 3

4
= −x

4
+ 37

4
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That is,

y = −x

4
+ 37

4

10. c(t) = (t3 + 1, t2 − 4)

solution The parametric equations are x = t3 + 1 and y = t2 − 4. We express t in terms of x:

x = t3 + 1

t3 = x − 1

t = (x − 1)1/3

Substituting in the equation of y yields

y = t2 − 4 = (x − 1)2/3 − 4

That is,

y = (x − 1)2/3 − 4

11. c(t) =
(

3 − 2

t
, t3 + 1

t

)
solution We use the given equation to express t in terms of x:

x = 3 − 2

t

2

t
= 3 − x

t = 2

3 − x

Substituting in the equation of y yields

y =
(

2

3 − x

)3
+ 1

2/(3 − x)
= 8

(3 − x)3
+ 3 − x

2

12. x = tan t , y = sec t

solution We use the trigonometric identity

1 + tan2 t = sec2 t

Substituting the parametric equations x = tan t and y = sec t we obtain

1 + x2 = y2 or y = ±
√

x2 + 1

In Exercises 13–16, calculate dy/dx at the point indicated.

13. c(t) = (t3 + t, t2 − 1), t = 3

solution The parametric equations are x = t3 + t and y = t2 − 1. We use the theorem on the slope of the tangent

line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= 2t

3t2 + 1

We now substitute t = 3 to obtain

dy

dx

∣∣∣∣
t=3

= 2 · 3

3 · 32 + 1
= 3

14
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14. c(θ) = (tan2 θ, cos θ), θ = π
4

solution The parametric equations are x = tan2θ , y = cos θ . We use the theorem on the slope of the tangent line to

find dy
dx

:

dy

dx
=

dy
dθ
dx
dθ

= − sin θ

2 tan θ sec2 θ
= − cos3 θ

2

We now substitute θ = π
4 to obtain

dy

dx

∣∣∣∣
θ=π/4

= − cos3 π
4

2
= − 1

4
√

2

15. c(t) = (et − 1, sin t), t = 20

solution We use the theorem for the slope of the tangent line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= (sin t)′
(et − 1)′ = cos t

et

We now substitute t = 20:

dy

dx

∣∣∣∣
t=0

= cos 20

e20

16. c(t) = (ln t, 3t2 − t), P = (0, 2)

solution The parametric equations are x = ln t , y = 3t2 − t . We use the theorem for the slope of the tangent line to

find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= 6t − 1
1
t

= 6t2 − t (1)

We now must identify the value of t corresponding to the point P = (0, 2) on the curve. We solve the following equations:

ln t = 0

3t2 − t = 2
⇒ t = 1

Substituting t = 1 in (1) we obtain

dy

dx

∣∣∣∣
P

= 6 · 12 − 1 = 5

17. Find the point on the cycloid c(t) = (t − sin t, 1 − cos t) where the tangent line has slope 1
2 .

solution Since x = t − sin t and y = 1 − cos t , the theorem on the slope of the tangent line gives

dy

dx
=

dy
dt
dx
dt

= sin t

1 − cos t

The points where the tangent line has slope 1
2 are those where dy

dx
= 1

2 . We solve for t :

dy

dx
= 1

2

sin t

1 − cos t
= 1

2
(1)

2 sin t = 1 − cos t

We let u = sin t . Then cos t = ±
√

1 − sin2t = ±
√

1 − u2. Hence

2u = 1 ±
√

1 − u2

We transfer sides and square to obtain

±
√

1 − u2 = 2u − 1
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1 − u2 = 4u2 − 4u + 1

5u2 − 4u = u(5u − 4) = 0

u = 0, u = 4

5

We find t by the relation u = sin t :

u = 0: sin t = 0 ⇒ t = 0, t = π

u = 4

5
: sin t = 4

5
⇒ t ≈ 0.93, t ≈ 2.21

These correspond to the points (0, 1), (π, 2), (0.13, 0.40), and (1.41, 1.60), respectively, for 0 < t < 2π .

18. Find the points on (t + sin t, t − 2 sin t) where the tangent is vertical or horizontal.

solution We use the theorem for the slope of the tangent line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= 1 − 2 cos t

1 + cos t

We find the values of t for which the denominator is zero. We ignore the numerator, since when 1 + cos t = 0, 1 − 2 cos t =
3 �= 0.

1 + cos t = 0

cos t = −1

t = π + 2πk where k ∈ Z

We now find the values of t for which the numerator is 0:

1 − 2 cos t = 0

1 = 2 cos t

1

2
= cos t

t = ±π

3
+ 2πk where k ∈ Z

Note that the denominator is not zero at these points. Thus, we have vertical tangents at t = π + 2πk and horizontal
tangents at t = ±π/3 + 2πk.

19. Find the equation of the Bézier curve with control points

P0 = (−1, −1), P1 = (−1, 1), P2 = (1, 1), P3(1, −1)

solution We substitute the given points in the appropriate formulas in the text to find the parametric equations of the
Bézier curve. We obtain

x(t) = −(1 − t)3 − 3t (1 − t)2 + t2(1 − t) + t3

= −(1 − 3t + 3t2 − t3) − (3t − 6t2 + 3t3) + (t2 − t3) + t3

= (−2t3 + 4t2 − 1)

y(t) = −(1 − t)3 + 3t (1 − t)2 + t2(1 − t) − t3

= −(1 − 3t + 3t2 − t3) + (3t − 6t2 + 3t3) + (t2 − t3) − t3

= (2t3 − 8t2 + 6t − 1)

20. Find the speed at t = π
4 of a particle whose position at time t seconds is c(t) = (sin 4t, cos 3t).

solution We use the parametric definition to find the speed. We obtain

ds

dt
=
√

((sin 4t)′)2 + ((cos 3t)′)2 =
√

(4 cos 4t)2 + (−3 sin 3t)2 =
√

16 cos2 4t + 9 sin2 3t

At time t = π
4 the speed is

ds

dt

∣∣∣∣
t=π/4

=
√

16 cos2 π + 9 sin2 3π

4
=
√

16 + 9 · 1

2
= √

20.5 ≈ 4.53
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21. Find the speed (as a function of t) of a particle whose position at time t seconds is c(t) = (sin t + t, cos t + t). What
is the particle’s maximal speed?

solution We use the parametric definition to find the speed. We obtain

ds

dt
=
√

((sin t + t)′)2 + ((cos t + t)′)2 =
√

(cos t + 1)2 + (1 − sin t)2

=
√

cos2 t + 2 cos t + 1 + 1 − 2 sin t + sin2 t = √3 + 2(cos t − sin t)

We now differentiate the speed function to find its maximum:

d2s

dt2
=
(√

3 + 2(cos t − sin t)
)′ = − sin t − cos t√

3 + 2(cos t − sin t)

We equate the derivative to zero, to obtain the maximum point:

d2s

dt2
= 0

− sin t − cos t√
3 + 2(cos t − sin t)

= 0

− sin t − cos t = 0

− sin t = cos t

sin(−t) = cos(−t)

−t = π

4
+ πk

t = −π

4
+ πk

Substituting t in the function of speed we obtain the value of the maximal speed:

√
3 + 2

(
cos −π

4
− sin −π

4

)
=
√√√√3 + 2

(√
2

2
−
(

−
√

2

2

))
=
√

3 + 2
√

2

22. Find the length of (3et − 3, 4et + 7) for 0 ≤ t ≤ 1.

solution We use the formula for arc length, to obtain

s =
∫ 1

0

√
((3et − 3)′)2 + ((4et + 7)′)2 dt =

∫ 1

0

√
(3et )2 + (4et )2 dt

=
∫ 1

0

√
9e2t + 16e2t dt =

∫ 1

0

√
25e2t dt =

∫ 1

0
5et dt = 5et

∣∣∣∣1
0

= 5(e − 1)

In Exercises 23 and 24, let c(t) = (e−t cos t, e−t sin t).

23. Show that c(t) for 0 ≤ t < ∞ has finite length and calculate its value.

solution We use the formula for arc length, to obtain:

s =
∫ ∞

0

√
((e−t cos t)′)2 + ((e−t sin t)′)2dt

=
∫ ∞

0

√
(−e−t cos t − e−t sin t)2 + (−e−t sin t + e−t cos t)2dt

=
∫ ∞

0

√
e−2t (cos t + sin t)2 + e−2t (cos t − sin t)2dt

=
∫ ∞

0
e−t

√
cos2 t + 2 sin t cos t + sin2 t + cos2 t − 2 sin t cos t + sin2 tdt

=
∫ ∞

0
e−t

√
2dt = √

2(−e−t )

∣∣∣∣∞
0

= −√
2

(
lim

t→∞ e−t − e0
)

= −√
2(0 − 1) = √

2
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24. Find the first positive value of t0 such that the tangent line to c(t0) is vertical, and calculate the speed at t = t0.

solution The curve has a vertical tangent where lim
t→t0

∣∣ dy
dx

∣∣ = ∞. We first find dy
dx

using the theorem for the slope of

a tangent line:

dy

dx
=

dy
dt
dx
dt

= (e−t sin t)′
(e−t cos t)′ = −e−t sin t + e−t cos t

−e−t cos t − e−t sin t

= − cos t − sin t

cos t + sin t
= sin t − cos t

sin t + cos t

We now search for t0 such that lim
t→t0

∣∣ dy
dx

∣∣ = ∞. In our case, this happens when the denominator is 0, but the numerator

is not, thus:

sin t0 + cos t0 = 0

cos t0 = − sin t0

cos −t0 = sin −t0

−t0 = π

4
− π

t0 = 3

4
π

We now use the formula for the speed, to find the speed at t0.

ds

dt
=
√

((e−t sin t)′)2 + ((e−t cos t)′)2

=
√

(−e−t cos t − e−t sin t)2 + (−e−t sin t + e−t cos t)2

=
√

e−2t (cos t + sin t)2 + e−2t (cos t − sin t)2

= e−t

√
cos2 t + 2 sin t cos t + sin2 t + cos2 t − 2 sin t cos t + sin2 t = e−t

√
2

Next we substitute t = 3
4π , to obtain

e−t0
√

2 = e−3π/4
√

2

25. Plot c(t) = (sin 2t, 2 cos t) for 0 ≤ t ≤ π . Express the length of the curve as a definite integral, and
approximate it using a computer algebra system.

solution We use a CAS to plot the curve. The resulting graph is shown here.

x

y

2

1

−2

−1

−2 −1 21

Plot of the curve (sin 2t, 2 cos t)

To calculate the arc length we use the formula for the arc length to obtain

s =
∫ π

0

√
(2 cos 2t)2 + (−2 sin t)2 dt = 2

∫ π

0

√
cos2 2t + sin2 t dt

We use a CAS to obtain s = 6.0972.
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26. Convert the points (x, y) = (1, −3), (3, −1) from rectangular to polar coordinates.

solution We convert the given points from cartesian coordinates to polar coordinates. For the first point we have

r =
√

x2 + y2 =
√

12 + (−3)2 = √
10

θ = arctan
y

x
= arctan −3 = 5.034

For the second point we have

r =
√

x2 + y2 =
√

32 + (−1)2 = √
10

θ = arctan
y

x
= arctan

−1

3
= −0.321, 5.961

27. Convert the points (r, θ) = (1, π
6

)
,
(
3, 5π

4

)
from polar to rectangular coordinates.

solution We convert the points from polar coordinates to cartesian coordinates. For the first point we have

x = r cos θ = 1 · cos
π

6
=

√
3

2

y = r sin θ = 1 · sin
π

6
= 1

2

For the second point we have

x = r cos θ = 3 cos
5π

4
= −3

√
2

2

y = r sin θ = 3 sin
5π

4
= −3

√
2

2

28. Write (x + y)2 = xy + 6 as an equation in polar coordinates.

solution We use the formula for converting from cartesian coordinates to polar coordinates to substitute r and θ for
x and y:

(x + y)2 = xy + 6

x2 + 2xy + y2 = xy + 6

x2 + y2 = −xy + 6

r2 = −(r cos θ)(r sin θ) + 6

r2 = −r2 cos θ sin θ + 6

r2(1 + sin θ cos θ) = 6

r2 = 6

1 + sin θ cos θ

r2 = 6

1 + sin 2θ
2

r2 = 12

2 + sin 2θ

29. Write r = 2 cos θ

cos θ − sin θ
as an equation in rectangular coordinates.

solution We use the formula for converting from polar coordinates to cartesian coordinates to substitute x and y for
r and θ :

r = 2 cos θ

cos θ − sin θ√
x2 + y2 = 2r cos θ

r cos θ − r sin θ√
x2 + y2 = 2x

x − y
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30. Show that r = 4

7 cos θ − sin θ
is the polar equation of a line.

solution We use the formula for converting from polar coordinates to cartesian coordinates to substitute x and y for
r and θ :

r = 4

7 cos θ − sin θ

1 = 4

7r cos θ − r sin θ

1 = 4

7x − y

7x − y = 4

y = 7x − 4

We obtained a linear function. Since the original equation in polar coordinates represents the same curve, it represents a
straight line as well.

31. Convert the equation

9(x2 + y2) = (x2 + y2 − 2y)2

to polar coordinates, and plot it with a graphing utility.

solution We use the formula for converting from cartesian coordinates to polar coordinates to substitute r and θ for
x and y:

9(x2 + y2) = (x2 + y2 − 2y)2

9r2 = (r2 − 2r sin θ)2

3r = r2 − 2r sin θ

3 = r − 2 sin θ

r = 3 + 2 sin θ

The plot of r = 3 + 2 sin θ is shown here:

r = 3 + 2sin

5

40 31−4 2−1−2−3
−2

4

3

2

1

0

−1

Plot of r = 3 + 2 sin θ

32. Calculate the area of the circle r = 3 sin θ bounded by the rays θ = π
3 and θ = 2π

3 .

solution We use the formula for area in polar coordinates to obtain

A = 1

2

∫ 2π/3

π/3
(3 sin θ)2 dθ = 9

2

∫ 2π/3

π/3
sin2 θ dθ = 9

4

∫ 2π/3

π/3
(1 − cos 2θ) dθ = 9

4

(
θ − sin 2θ

2

∣∣∣∣2π/3

π/3

)

= 9

4

(
π

3
− 1

2

(
sin

4π

3
− sin

2π

3

))
= 9

4

(
π

3
− 1

2

(
−

√
3

2
−

√
3

2

))
= 9

4

(
π

3
+

√
3

2

)
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33. Calculate the area of one petal of r = sin 4θ (see Figure 1).

y

x

n = 2 (4 petals)

y

x

n = 4 (8 petals)

y

x

n = 6 (12 petals)

FIGURE 1 Plot of r = sin(nθ).

solution We use a CAS to generate the plot, as shown here.

r = 4sin

−0.8 −0.4

1
0.8
0.6
0.4
0.2

0
−0.2
−0.4
−0.6
−0.8

−1
10 0.80.4−1

Plot of r = sin 4θ

We can see that one leaf lies between the rays θ = 0 and θ = θ

4
. We now use the formula for area in polar coordinates to

obtain

A = 1

2

∫ π/4

0
sin2 4θ dθ = 1

4

∫ π/4

0
(1 − cos 8θ) dθ = 1

4

(
θ − sin 8θ

8

∣∣∣∣π/4

0

)

= π

16
− 1

32
(sin 2π − sin 0) = π

16

34. The equation r = sin(nθ), where n ≥ 2 is even, is a “rose” of 2n petals (Figure 1). Compute the total area of the
flower, and show that it does not depend on n.

solution We calculate the total area of the flower, that is, the area between the rays θ = 0 and θ = 2π , using the
formula for area in polar coordinates:

A = 1

2

∫ 2π

0
sin2 2nθ dθ = 1

4

∫ 2π

0
(1 − cos 4nθ) dθ = 1

4

(
θ − sin 4nθ

4n

∣∣∣∣2π

0

)

= π

2
− 1

16n
(sin 8nπ − sin 0) = π

2

Since the area is
π

2
for every n ∈ Z, the area is independent of n.

35. Calculate the total area enclosed by the curve r2 = cos θesin θ (Figure 2).

y

x

1

1−1

FIGURE 2 Graph of r2 = cos θesin θ .

solution Note that this is defined only for θ between −π/2 and π/2. We use the formula for area in polar coordinates
to obtain:

A = 1

2

∫ π/2

−π/2
r2 dθ = 1

2

∫ π/2

−π/2
cos θesin θ dθ
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We evaluate the integral by making the substitution x = sin θ dx = cos θ dθ :

A = 1

2

∫ π/2

−π/2
cos θesin θ dθ = 1

2
ex

∣∣∣∣1−1
= 1

2

(
e − e−1

)
36. Find the shaded area in Figure 3.

y

r = 1 + cos 2q

x

1

−1

21−2 −1

FIGURE 3

solution We first find the points of intersection between the unit circle and the function.

1 = 1 + cos 2θ

cos 2θ = 0

2θ = π

2
+ πn

θ = π

4
+ π

2
n

We now find the area of the shaded figure in the first quadrant. This has two parts. The first, from 0 to π/4, is just an octant
of the unit circle, and thus has area π/8. The second, from π/4 to π/2, is found as follows:

A = 1

2

∫ π/2

π/4
(1 + cos 2θ)2 dθ = 1

2

∫ π/2

π/4
1 + 2 cos 2θ + cos2 2θ dθ = 1

2

∫ π/2

π/4

3

2
+ 2 cos 2θ + 1

2
cos 4θ dθ

= 1

2

(
3θ

2
+ sin 2θ + 1

8
sin 4θ

) ∣∣∣∣π/2

π/4
= 1

2

(
3π

8
− 1

)
The total area in the first quadrant is thus 5π

16 − 1
2 ; multiply by 2 to get the total area of 5π

8 − 1.

37. Find the area enclosed by the cardioid r = a(1 + cos θ), where a > 0.

solution The graph of r = a (1 + cos θ) in the rθ -plane for 0 ≤ θ ≤ 2π and the cardioid in the xy-plane are shown
in the following figures:

r

a

2a

2πππ 
2

3π 
2

y

x
θ = 0
r = 2a

θ = , r = a
3π

2

θ = , r = a
π

2

θ = π, r = 0

r = a (1 + cos θ) The cardioid r = a (1 + cos θ), a > 0

As θ varies from 0 to π the radius r decreases from 2a to 0, and this gives the upper part of the cardioid.
The lower part is traced as θ varies from π to 2π and consequently r increases from 0 back to 2a. We compute

the area enclosed by the upper part of the cardioid and the x-axis, using the following integral (we use the identity
cos2 θ = 1

2 + 1
2 cos 2θ ):

1

2

∫ π

0
r2 dθ = 1

2

∫ π

0
a2(1 + cos θ)2 dθ = a2

2

∫ π

0

(
1 + 2 cos θ + cos2 θ

)
dθ

= a2

2

∫ π

0

(
1 + 2 cos θ + 1

2
+ 1

2
cos 2θ

)
dθ = a2

2

∫ π

0

(
3

2
+ 2 cos θ + 1

2
cos 2θ

)
dθ

= a2

2

[
3θ

2
+ 2 sin θ + 1

4
sin 2θ

] ∣∣∣∣π
0

= a2

2

[
3π

2
+ 2 sin π + 1

4
sin 2π − 0

]
= 3πa2

4
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Using symmetry, the total area A enclosed by the cardioid is

A = 2 · 3πa2

4
= 3πa2

2

38. Calculate the length of the curve with polar equation r = θ in Figure 4.

y
r = q

x

2

FIGURE 4

solution The interval of θ values is 0 ≤ θ ≤ π . We use the formula for the arc length in polar coordinates, with
r = f (θ) = θ . We get

S =
∫ π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π

0

√
θ2 + (θ ′)2 dθ =

∫ π

0

√
θ2 + 1 dθ

= θ

2

√
θ2 + 1 + 1

2
ln
∣∣∣θ +

√
θ2 + 1

∣∣∣ ∣∣∣∣π
θ=0

= π

2

√
π2 + 1 + 1

2
ln
(
π +

√
π2 + 1

)
39. Figure 5 shows the graph of r = e0.5θ sin θ for 0 ≤ θ ≤ 2π . Use a computer algebra system to approximate
the difference in length between the outer and inner loops.

y

x

5

10

3−6

FIGURE 5

solution We note that the inner loop is the curve for θ ∈ [0, π ], and the outer loop is the curve for θ ∈ [π, 2π ]. We
express the length of these loops using the formula for the arc length. The length of the inner loop is

s1 =
∫ π

0

√
(e0.5θ sin θ)2 + ((e0.5θ sin θ)′)2dθ =

∫ π

0

√
eθ sin2 θ +

(
e0.5θ sin θ

2
+ e0.5θ cos θ

)2

dθ

and the length of the outer loop is

s2 =
∫ 2π

π

√
eθ sin2 θ +

(
e0.5θ sin θ

2
+ e0.5θ cos θ

)2

dθ

We now use the CAS to calculate the arc length of each of the loops. We obtain that the length of the inner loop is 7.5087
and the length of the outer loop is 36.121, hence the outer one is 4.81 times longer than the inner one.

40. Show that r = f1(θ) and r = f2(θ) define the same curves in polar coordinates if f1(θ) = −f2(θ + π).
Use this to show that the following define the same conic section:

r = de

1 − e cos θ
, r = −de

1 + e cos θ

solution Suppose (r, θ) lies on the curve r = f2(θ). Since (r, θ) and (−r, θ + π) define the same point in polar
coordinates, we have −r = f2(θ + π) = −f1(θ), so that r = f1(θ), Thus (r, θ) lies on f1 as well. Conversely,
suppose (r, θ) lies on r = f1(θ). Since (r, θ) and (−r, θ − π) define the same point in polar coordinates, we have
−r = f1(θ − π) = −f2(θ − π + π) = −f2(θ) so that r = f2(θ) and (r, θ) lies on f2 as well. Thus the two equations
define exactly the same set of points.

Now set

f1(θ) = de

1 − e cos θ
f2(θ) = − de

1 + e cos θ
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and consider the polar equations r = f1(θ) and r = f2(θ). We have

−f2(θ + π) = − −de

1 + e cos(θ + π)
= de

1 − e cos θ
= f1(θ)

so that by the above, the two equations define the same conic section.

In Exercises 41–44, identify the conic section. Find the vertices and foci.

41.
(x

3

)2 +
(y

2

)2 = 1

solution This is an ellipse in standard position. Its foci are (±
√

32 − 22, 0) = (±√
5, 0) and its vertices are

(±3, 0), (0, ±2).

42. x2 − 2y2 = 4

solution We divide the equation by 4 to obtain

(x

2

)2 −
(

y√
2

)2
= 1

This is a hyperbola in standard position, its foci are

(
±
√

22 + √
2

2
, 0

)
= (±√

6, 0), and its vertices are (±2, 0).

43.
(
2x + 1

2y
)2 = 4 − (x − y)2

solution We simplify the equation: (
2x + 1

2
y

)2
= 4 − (x − y)2

4x2 + 2xy + 1

4
y2 = 4 − x2 + 2xy − y2

5x2 + 5

4
y2 = 4

5x2

4
+ 5y2

16
= 1⎛⎝ x

2√
5

⎞⎠2

+
⎛⎝ y

4√
5

⎞⎠2

= 1

This is an ellipse in standard position, with foci

(
0, ±

√(
4√
5

)2 −
(

2√
5

)2
)

=
(

0, ±
√

12
5

)
and vertices

(
± 2√

5
, 0
)

,(
0, ± 4√

5

)
.

44. (y − 3)2 = 2x2 − 1

solution We simplify the equation:

(y − 3)2 = 2x2 − 1

2x2 − (y − 3)2 = 1⎛⎝ x

1√
2

⎞⎠2

− (y − 3)2 = 1

This is a hyperbola shifted 3 units on the y-axis. Therefore, its foci are

(
±
√(

1√
2

)2 + 1, 3

)
=
(

±
√

3
2 , 3

)
and its

vertices are
(
± 1√

2
, 3
)

.

In Exercises 45–50, find the equation of the conic section indicated.

45. Ellipse with vertices (±8, 0) and foci (±√
3, 0)

solution Since the foci of the desired ellipse are on the x-axis, we conclude that a > b. We are given that the points

(±8, 0) are vertices of the ellipse, and since they are on the x-axis, a = 8. We are given that the foci are (±√
3, 0) and

we have shown that a > b, hence we have that
√

a2 − b2 = √
3. Solving for b yields
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√
a2 − b2 = √

3

a2 − b2 = 3

82 − b2 = 3

b2 = 61

b = √
61

Next we use a and b to construct the equation of the ellipse:

(x

8

)2 +
(

y√
61

)2
= 1.

46. Ellipse with foci (±8, 0), eccentricity 1
8

solution If the foci are on the x-axis, then a > b, and c =
√

a2 − b2. We are given that e = 1
8 , and c = 8. Substituting

and solving for a and b yields

e = c

a

c =
√

a2 − b2

1

8
= 8

a

64 = a

8 =
√

642 − b2

64 = 642 − b2

b2 = 64 · 63

b = 8
√

63

We use a and b to construct the equation of the ellipse:

( x

64

)2 +
(

y

8
√

63

)2
= 1.

47. Hyperbola with vertices (±8, 0), asymptotes y = ± 3
4x

solution Since the asymptotes of the hyperbola are y = ± 3
4x, and the equation of the asymptotes for a general

hyperbola in standard position is y = ± b
a x, we conclude that b

a = 3
4 . We are given that the vertices are (±8, 0), thus

a = 8. We substitute and solve for b:

b

a
= 3

4

b

8
= 3

4

b = 6

Next we use a and b to construct the equation of the hyperbola:(x

8

)2 −
(y

6

)2 = 1.

48. Hyperbola with foci (2, 0) and (10, 0), eccentricity e = 4

solution Since the foci lie on the x axis, the x is the focal axis. The center of the hyperbola is midway between the

foci, so lies at (6, 0), and c = 4. Then c = ae gives a = 1; then b =
√

c2 − a2 = √
15, so that the equation of the

hyperbola is

(x − 6)2 −
(

y√
15

)2
= 1
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49. Parabola with focus (8, 0), directrix x = −8

solution This is similar to the usual equation of a parabola, but we must use y as x, and x as y, to obtain

x = 1

32
y2.

50. Parabola with vertex (4, −1), directrix x = 15

solution The directrix is a vertical line and the vertex is (4, −1), so the equation is of the form

x − 4 = 1

4c
(y + 1)2

The directrix is to the right of the vertex; the distance from the directrix to the vertex is −11, so c = −11 and the equation
is

x = 4 − 1

44
(y + 1)2

51. Find the asymptotes of the hyperbola 3x2 + 6x − y2 − 10y = 1.

solution We complete the squares and simplify:

3x2 + 6x − y2 − 10y = 1

3(x2 + 2x) − (y2 + 10y) = 1

3(x2 + 2x + 1 − 1) − (y2 + 10y + 25 − 25) = 1

3(x + 1)2 − 3 − (y + 5)2 + 25 = 1

3(x + 1)2 − (y + 5)2 = −21(
y + 5√

21

)2
−
(

x + 1√
7

)2
= 1

We obtained a hyperbola with focal axis that is parallel to the y-axis, and is shifted −5 units on the y-axis, and −1 units
in the x-axis. Therefore, the asymptotes are

x + 1 = ±
√

7√
21

(y + 5) or y + 5 = ±√
3(x + 1).

52. Show that the “conic section” with equation x2 − 4x + y2 + 5 = 0 has no points.

solution We complete the squares in the given equation:

x2 − 4x + 4y2 + 5 = 0

x2 − 4x + 4 − 4 + 4y2 + 5 = 0

(x − 2)2 + 4y2 = −1

Since (x − 2)2 ≥ 0 and y2 ≥ 0, there is no point satisfying the equation, hence it cannot represent a conic section.

53. Show that the relation dy
dx

= (e2 − 1) x
y holds on a standard ellipse or hyperbola of eccentricity e.

solution We differentiate the equations of the standard ellipse and the hyperbola with respect to x:

Ellipse: Hyperbola:

x2

a2
+ y2

b2
= 1

2x

a2
+ 2y

b2

dy

dx
= 0

dy

dx
= −b2

a2

x

y

x2

a2
− y2

b2
= 1

2x

a2
− 2y

b2

dy

dx
= 0

dy

dx
= b2

a2

x

y

The eccentricity of the ellipse is e =
√

a2−b2

a , hence e2a2 = a2 − b2 or e2 = 1 − b2

a2 yielding b2

a2 = 1 − e2.
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The eccentricity of the hyperbola is e =
√

a2+b2

a , hence e2a2 = a2 + b2 or e2 = 1 + b2

a2 , giving b2

a2 = e2 − 1.

Combining with the expressions for dy
dx

we get:

Ellipse: Hyperbola:

dy

dx
= −(1 − e2)

x

y
= (e2 − 1)

x

y

dy

dx
= (e2 − 1)

x

y

We, thus, proved that the relation dy
dx

= (e2 − 1) x
y holds on a standard ellipse or hyperbola of eccentricity e.

54. The orbit of Jupiter is an ellipse with the sun at a focus. Find the eccentricity of the orbit if the perihelion (closest
distance to the sun) equals 740 × 106 km and the aphelion (farthest distance from the sun) equals 816 × 106 km.

solution For the sake of simplicity, we treat all numbers in units of 106 km. By Kepler’s First Law we conclude that
the sun is at one of the foci of the ellipse. Therefore, the closest and farthest points to the sun are vertices. Moreover, they
are the vertices on the x-axis, hence we conclude that the distance between the two vertices is

2a = 740 + 816 = 1556

Since the distance between each focus and the vertex that is closest to it is the same distance, and since a = 778, we
conclude that the distance between the foci is

c = a − 740 = 38

We substitute this in the formula for the eccentricity to obtain:

e = c

a
= 0.0488.

55. Refer to Figure 25 in Section 11.5. Prove that the product of the perpendicular distances F1R1 and F2R2 from the
foci to a tangent line of an ellipse is equal to the square b2 of the semiminor axes.

solution We first consider the ellipse in standard position:

x2

a2
+ y2

b2
= 1

The equation of the tangent line at P = (x0, y0) is

x0x

a2
+ y0y

b2
= 1

or

b2x0x + a2y0y − a2b2 = 0

The distances of the foci F1 = (c, 0) and F2 = (−c, 0) from the tangent line are

F1R1 = |b2x0c − a2b2|√
b4x2

0 + a4y2
0

; F2R2 = |b2x0c + a2b2|√
b4x2

0 + a4y2
0

We compute the product of the distances:

F1R1 · F2R2 =
∣∣∣∣∣∣
(
b2x0c − a2b2

) (
b2x0c + a2b2

)
b4x2

0 + a4y2
0

∣∣∣∣∣∣ =
∣∣∣∣∣b4x2

0c2 − a4b4

b4x2
0 + a4y2

0

∣∣∣∣∣ (1)

The point P = (x0, y0) lies on the ellipse, hence:

x2
0

a2
+ y2

0

b2
= 1 ⇒ a4y2

0 = a4b2 − a2b2x2
0

We substitute in (1) to obtain (notice that b2 − a2 = −c2)

F1R1 · F2R2 = |b4x2
0c2 − a4b4|

|b4x2
0 + a4b2 − a2b2x2

0 | = |b4x2
0c2 − a4b4|

|b2(b2 − a2)x2
0 + a4b2|

= |b4x2
0c2 − a4b4|

| − b2x2
0c2 + a4b2| = |b2(x2

0c2 − a4)|
| − (x2

0c2 − a4)| = | − b2| = b2

The product F1R1 · F2R2 remains unchanged if we translate the standard ellipse.
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