
March 31, 2011

10 INFINITE SERIES

10.1 Sequences

Preliminary Questions
1. What is a4 for the sequence an = n2 − n?

solution Substituting n = 4 in the expression for an gives

a4 = 42 − 4 = 12.

2. Which of the following sequences converge to zero?

(a)
n2

n2 + 1
(b) 2n (c)

(−1

2

)n

solution

(a) This sequence does not converge to zero:

lim
n→∞

n2

n2 + 1
= lim

x→∞
x2

x2 + 1
= lim

x→∞
1

1 + 1
x2

= 1

1 + 0
= 1.

(b) This sequence does not converge to zero: this is a geometric sequence with r = 2 > 1; hence, the sequence diverges
to ∞.

(c) Recall that if |an| converges to 0, then an must also converge to zero. Here,∣∣∣∣
(

−1

2

)n∣∣∣∣ =
(

1

2

)n

,

which is a geometric sequence with 0 < r < 1; hence, ( 1
2 )n converges to zero. It therefore follows that (− 1

2 )n converges
to zero.

3. Let an be the nth decimal approximation to
√

2. That is, a1 = 1, a2 = 1.4, a3 = 1.41, etc. What is lim
n→∞ an?

solution lim
n→∞ an = √

2.

4. Which of the following sequences is defined recursively?

(a) an = √
4 + n (b) bn = √

4 + bn−1

solution

(a) an can be computed directly, since it depends on n only and not on preceding terms. Therefore an is defined explicitly
and not recursively.

(b) bn is computed in terms of the preceding term bn−1, hence the sequence {bn} is defined recursively.

5. Theorem 5 says that every convergent sequence is bounded. Determine if the following statements are true or false
and if false, give a counterexample.

(a) If {an} is bounded, then it converges.

(b) If {an} is not bounded, then it diverges.

(c) If {an} diverges, then it is not bounded.

solution

(a) This statement is false. The sequence an = cos πn is bounded since −1 ≤ cos πn ≤ 1 for all n, but it does not
converge: since an = cos nπ = (−1)n, the terms assume the two values 1 and −1 alternately, hence they do not approach
one value.

(b) By Theorem 5, a converging sequence must be bounded. Therefore, if a sequence is not bounded, it certainly does
not converge.

(c) The statement is false. The sequence an = (−1)n is bounded, but it does not approach one limit.
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Exercises
1. Match each sequence with its general term:

a1, a2, a3, a4, . . . General term

(a) 1
2 , 2

3 , 3
4 , 4

5 , . . . (i) cos πn

(b) −1, 1, −1, 1, . . . (ii)
n!
2n

(c) 1, −1, 1, −1, . . . (iii) (−1)n+1

(d) 1
2 , 2

4 , 6
8 , 24

16 . . . (iv)
n

n + 1

solution
(a) The numerator of each term is the same as the index of the term, and the denominator is one more than the numerator;
hence an = n

n+1 , n = 1, 2, 3, . . . .

(b) The terms of this sequence are alternating between −1 and 1 so that the positive terms are in the even places. Since
cos πn = 1 for even n and cos πn = −1 for odd n, we have an = cos πn, n = 1, 2, . . . .

(c) The terms an are 1 for odd n and −1 for even n. Hence, an = (−1)n+1, n = 1, 2, . . .

(d) The numerator of each term is n!, and the denominator is 2n; hence, an = n!
2n , n = 1, 2, 3, . . . .

2. Let an = 1

2n − 1
for n = 1, 2, 3, . . . . Write out the first three terms of the following sequences.

(a) bn = an+1 (b) cn = an+3

(c) dn = a2
n (d) en = 2an − an+1

solution
(a) The first three terms of {bn} are:

b1 = a2 = 1

2 · 2 − 1
= 1

3
, b2 = a3 = 1

2 · 3 − 1
= 1

5
, b3 = a4 = 1

2 · 4 − 1
= 1

7
.

(b) The first three terms of {cn} are:

c1 = a4 = 1

2 · 4 − 1
= 1

7
, c2 = a5 = 1

2 · 5 − 1
= 1

9
, c3 = a6 = 1

2 · 6 − 1
= 1

11
.

(c) Note

a1 = 1

2 · 1 − 1
= 1, a2 = 1

2 · 2 − 1
= 1

3
, a3 = 1

2 · 3 − 1
= 1

5
.

Thus,

d1 = a2
1 = 12 = 1, d2 = a2

2 =
(

1

3

)2
= 1

9
, d3 = a2

3 =
(

1

5

)2
= 1

25
.

(d) The first three terms of {en} are:

e1 = 2a1 − a2, e2 = 2a2 − a3, e3 = 2a3 − a4.

Thus, we must compute a1, a2, a3 and a4. We set n = 1, 2, 3 and 4 in the formula for an to obtain:

a1 = 1

2 · 1 − 1
= 1, a2 = 1

2 · 2 − 1
= 1

3
, a3 = 1

2 · 3 − 1
= 1

5
, a4 = 1

2 · 4 − 1
= 1

7
.

Therefore,

e1 = 2 · 1 − 1

3
= 5

3
, e2 = 2 · 1

3
− 1

5
= 7

15
, e3 = 2 · 1

5
− 1

7
= 9

35
.

In Exercises 3–12, calculate the first four terms of the sequence, starting with n = 1.

3. cn = 3n

n!
solution Setting n = 1, 2, 3, 4 in the formula for cn gives

c1 = 31

1! = 3

1
= 3, c2 = 32

2! = 9

2
,

c3 = 33

3! = 27

6
= 9

2
, c4 = 34

4! = 81

24
= 27

8
.



March 31, 2011

S E C T I O N 10.1 Sequences 1203

4. bn = (2n − 1)!
n!

solution Setting n = 1, 2, 3, 4 in the formula for bn gives

b1 = (2 · 1 − 1)!
1! = 1

1
= 1, b2 = (2 · 2 − 1)

2! = 6

2
= 3,

b3 = (2 · 3 − 1)!
3! = 120

6
= 20, b4 = (2 · 4 − 1)

4! = 5040

24
= 210.

5. a1 = 2, an+1 = 2a2
n − 3

solution For n = 1, 2, 3 we have:

a2 = a1+1 = 2a2
1 − 3 = 2 · 4 − 3 = 5;

a3 = a2+1 = 2a2
2 − 3 = 2 · 25 − 3 = 47;

a4 = a3+1 = 2a2
3 − 3 = 2 · 2209 − 3 = 4415.

The first four terms of {an} are 2, 5, 47, 4415.

6. b1 = 1, bn = bn−1 + 1

bn−1

solution For n = 2, 3, 4 we have

b2 = b1 + 1

b1
= 1 + 1

1
= 2;

b3 = b2 + 1

b2
= 2 + 1

2
= 5

2
;

b4 = b3 + 1

b2
= 5

2
+ 2

5
= 29

10
.

The first four terms of {bn} are 1, 2,
5

2
,

29

10
.

7. bn = 5 + cos πn

solution For n = 1, 2, 3, 4 we have

b1 = 5 + cos π = 4;
b2 = 5 + cos 2π = 6;
b3 = 5 + cos 3π = 4;
b4 = 5 + cos 4π = 6.

The first four terms of {bn} are 4, 6, 4, 6.

8. cn = (−1)2n+1

solution for n = 1, 2, 3, 4 we have

c1 = (−1)2·1+1 = (−1)3 = −1;
c2 = (−1)2·2+1 = (−1)5 = −1;
c3 = (−1)2·3+1 = (−1)7 = −1;
c4 = (−1)2·4+1 = (−1)9 = −1.

The first four terms of {cn} are −1, −1, −1, −1.

9. cn = 1 + 1

2
+ 1

3
+ · · · + 1

n

solution

c1 = 1;

c2 = 1 + 1

2
= 3

2
;

c3 = 1 + 1

2
+ 1

3
= 3

2
+ 1

3
= 11

6
;

c4 = 1 + 1

2
+ 1

3
+ 1

4
= 11

6
+ 1

4
= 25

12
.
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10. an = n + (n + 1) + (n + 2) + · · · + (2n)

solution The general term an is the sum of n + 1 successive numbers, where the first one is n and the last one is 2n.
Thus,

a1 = 1 + 2 = 3;
a2 = 2 + 3 + 4 = 9;
a3 = 3 + 4 + 5 + 6 = 18;
a4 = 4 + 5 + 6 + 7 + 8 = 30.

11. b1 = 2, b2 = 3, bn = 2bn−1 + bn−2

solution We need to find b3 and b4. Setting n = 3 and n = 4 and using the given values for b1 and b2 we obtain:

b3 = 2b3−1 + b3−2 = 2b2 + b1 = 2 · 3 + 2 = 8;
b4 = 2b4−1 + b4−2 = 2b3 + b2 = 2 · 8 + 3 = 19.

The first four terms of the sequence {bn} are 2, 3, 8, 19.

12. cn = n-place decimal approximation to e

solution Using a calculator we find that e = 2.718281828 . . .. Thus, the four first terms of {cn} are

c1 = 2.7; c2 = 2.72; c3 = 2.718; c4 = 2.7183.

13. Find a formula for the nth term of each sequence.

(a)
1

1
,
−1

8
,

1

27
, . . . (b)

2

6
,

3

7
,

4

8
, . . .

solution

(a) The denominators are the third powers of the positive integers starting with n = 1. Also, the sign of the terms is
alternating with the sign of the first term being positive. Thus,

a1 = 1

13
= (−1)1+1

13
; a2 = − 1

23
= (−1)2+1

23
; a3 = 1

33
= (−1)3+1

33
.

This rule leads to the following formula for the nth term:

an = (−1)n+1

n3
.

(b) Assuming a starting index of n = 1, we see that each numerator is one more than the index and the denominator is
four more than the numerator. Thus, the general term an is

an = n + 1

n + 5
.

14. Suppose that lim
n→∞ an = 4 and lim

n→∞ bn = 7. Determine:

(a) lim
n→∞(an + bn) (b) lim

n→∞ a3
n

(c) lim
n→∞ cos(πbn) (d) lim

n→∞(a2
n − 2anbn)

solution

(a) By the Limit Laws for Sequences, we find

lim
n→∞ (an + bn) = lim

n→∞ an + lim
n→∞ bn = 4 + 7 = 11.

(b) By the Limit Laws for Sequences, we find

lim
n→∞ a3

n = lim
n→∞ (an · an · an) =

(
lim

n→∞ an

)
·
(

lim
n→∞ an

)
·
(

lim
n→∞ an

)
=
(

lim
n→∞ an

)3 = 43 = 64.

(c) By Theorem 4, we can “bring the limit inside the function":

lim
n→∞ cos(πbn) = cos

(
lim

n→∞ πbn

)
= cos

(
π lim

n→∞ bn

)
= cos(7π) = −1.
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(d) By the Limit Laws of Sequences, we find

lim
n→∞

(
a2
n − 2anbn

)
= lim

n→∞ a2
n − lim

n→∞ 2anbn =
(

lim
n→∞ an

)2 − 2
(

lim
n→∞ an

) (
lim

n→∞ bn

)
= 42 − 2 · 4 · 7 = −40.

In Exercises 15–26, use Theorem 1 to determine the limit of the sequence or state that the sequence diverges.

15. an = 12

solution We have an = f (n) where f (x) = 12; thus,

lim
n→∞ an = lim

x→∞ f (x) = lim
x→∞ 12 = 12.

16. an = 20 − 4

n2

solution We have an = f (n) where f (x) = 20 − 4

x2
; thus,

lim
n→∞

(
20 − 4

n2

)
= lim

x→∞

(
20 − 4

x2

)
= 20 − 0 = 20.

17. bn = 5n − 1

12n + 9

solution We have bn = f (n) where f (x) = 5x − 1

12x + 9
; thus,

lim
n→∞

5n − 1

12n + 9
= lim

x→∞
5x − 1

12x + 9
= 5

12
.

18. an = 4 + n − 3n2

4n2 + 1

solution We have an = f (n) where f (x) = 4 + x − 3x2

4x2 + 1
; thus,

lim
n→∞

4 + n − 3n2

4n2 + 1
= lim

x→∞
4 + x − 3x2

4x2 + 1
= −3

4

19. cn = −2−n

solution We have cn = f (n) where f (x) = −2−x ; thus,

lim
n→∞

(−2−n
) = lim

x→∞ −2−x = lim
x→∞ − 1

2x
= 0.

20. zn =
(

1

3

)n

solution We have zn = f (n) where f (x) =
(

1

3

)x

; thus,

lim
n→∞

(
1

3

)n

= lim
x→∞

(
1

3

)x

= 0.

21. cn = 9n

solution We have cn = f (n) where f (x) = 9x ; thus,

lim
n→∞ 9n = lim

x→∞ 9x = ∞
Thus, the sequence 9n diverges.

22. zn = 10−1/n

solution We have zn = f (n) where f (x) = (0.1)−1/x ; thus

lim
n→∞(0.1)−1/n = lim

x→∞(0.1)−1/x = (0.1)limx→∞(−1/x) = (0.1)0 = 1.

23. an = n√
n2 + 1

solution We have an = f (n) where f (x) = x√
x2 + 1

; thus,

lim
n→∞

n√
n2 + 1

= lim
x→∞

x√
x2 + 1

= lim
x→∞

x
x√

x2+1
x

= lim
x→∞

1√
x2+1
x2

= lim
x→∞

1√
1 + 1

x2

= 1√
1 + 0

= 1.
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24. an = n√
n3 + 1

solution We have an = f (n) where f (x) = x√
x3 + 1

; thus,

lim
n→∞

n√
n3 + 1

= lim
x→∞

x√
x3 + 1

= lim
x→∞

x
x3/2√
x3+1
x3/2

= lim
x→∞

1√
x√

1 + 1
x3

= 0√
1 + 0

= 0

1
= 0.

25. an = ln

(
12n + 2

−9 + 4n

)

solution We have an = f (n) where f (x) = ln

(
12x + 2

−9 + 4x

)
; thus,

lim
n→∞ ln

(
12n + 2

−9 + 4n

)
= lim

x→∞ ln

(
12x + 2

−9 + 4x

)
= ln lim

x→∞

(
12x + 2

−9 + 4x

)
= ln 3

26. rn = ln n − ln(n2 + 1)

solution We have rn = f (n) where f (x) = ln x − ln(x2 + 1); thus,

lim
n→∞(ln n − ln(n2 + 1)) = lim

x→∞(ln x − ln(x2 + 1)) = lim
x→∞ ln

x

x2 + 1

But this function diverges as x → ∞, so that rn diverges as well.

In Exercises 27–30, use Theorem 4 to determine the limit of the sequence.

27. an =
√

4 + 1

n

solution We have

lim
n→∞ 4 + 1

n
= lim

x→∞ 4 + 1

x
= 4

Since
√

x is a continuous function for x > 0, Theorem 4 tells us that

lim
n→∞

√
4 + 1

n
=
√

lim
n→∞ 4 + 1

n
= √

4 = 2

28. an = e4n/(3n+9)

solution We have

lim
n→∞

4n

3n + 9
= 4

3

Since ex is continuous for all x, Theorem 4 tells us that

lim
n→∞ e4n/(3n+9) = elimn→∞ 4n/(3n+9) = e4/3

29. an = cos−1

(
n3

2n3 + 1

)

solution We have

lim
n→∞

n3

2n3 + 1
= 1

2

Since cos−1(x) is continuous for all x, Theorem 4 tells us that

lim
n→∞ cos−1

(
n3

2n3 + 1

)
= cos−1

(
lim

n→∞
n3

2n3 + 1

)
= cos−1(1/2) = π

3

30. an = tan−1(e−n)

solution We have

lim
n→∞ = e−n lim

x→∞ e−x = 0

Since tan−1(x) is continuous for all x, Theorem 4 tells us that

lim
n→∞ tan−1(e−n) = tan−1

(
lim

n→∞ e−n
)

= tan−1(0) = 0
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31. Let an = n

n + 1
. Find a number M such that:

(a) |an − 1| ≤ 0.001 for n ≥ M .

(b) |an − 1| ≤ 0.00001 for n ≥ M .

Then use the limit definition to prove that lim
n→∞ an = 1.

solution
(a) We have

|an − 1| =
∣∣∣∣ n

n + 1
− 1

∣∣∣∣ =
∣∣∣∣n − (n + 1)

n + 1

∣∣∣∣ =
∣∣∣∣ −1

n + 1

∣∣∣∣ = 1

n + 1
.

Therefore |an − 1| ≤ 0.001 provided 1
n+1 ≤ 0.001, that is, n ≥ 999. It follows that we can take M = 999.

(b) By part (a), |an − 1| ≤ 0.00001 provided 1
n+1 ≤ 0.00001, that is, n ≥ 99999. It follows that we can take M = 99999.

We now prove formally that lim
n→∞ an = 1. Using part (a), we know that

|an − 1| = 1

n + 1
< ε,

provided n > 1
ε − 1. Thus, Let ε > 0 and take M = 1

ε − 1. Then, for n > M , we have

|an − 1| = 1

n + 1
<

1

M + 1
= ε.

32. Let bn = ( 1
3

)n.

(a) Find a value of M such that |bn| ≤ 10−5 for n ≥ M .

(b) Use the limit definition to prove that lim
n→∞ bn = 0.

solution

(a) Solving
( 1

3

)n ≤ 10−5 for n, we find

n ≥ 5 log3 10 = 5
ln 10

ln 3
≈ 10.48.

It follows that we can take M = 10.5.

(b) We see that ∣∣∣∣
(

1

3

)n

− 0

∣∣∣∣ = 1

3n
< ε

provided

n > log3
1

ε
.

Thus, let ε > 0 and take M = log3
1
ε . Then, for n > M , we have∣∣∣∣

(
1

3

)n

− 0

∣∣∣∣ = 1

3n
<

1

3M
= ε.

33. Use the limit definition to prove that lim
n→∞ n−2 = 0.

solution We see that

|n−2 − 0| =
∣∣∣∣ 1

n2

∣∣∣∣ = 1

n2
< ε

provided

n >
1√
ε
.

Thus, let ε > 0 and take M = 1√
ε

. Then, for n > M , we have

|n−2 − 0| =
∣∣∣∣ 1

n2

∣∣∣∣ = 1

n2
<

1

M2
= ε.
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34. Use the limit definition to prove that lim
n→∞

n

n + n−1
= 1.

solution Since

n

n + n−1
= n2

n(n + n−1)
= n2

n2 + 1

we see that ∣∣∣∣∣ n2

n2 + 1
− 1

∣∣∣∣∣ =
∣∣∣∣ −1

n2 + 1

∣∣∣∣ = 1

n2 + 1
< ε

provided

n >

√
1

ε
− 1

So choose ε > 0, and let M =
√

1

ε
− 1. Then, for n > M , we have

∣∣∣∣ n

n + n−1
− 1

∣∣∣∣ =
∣∣∣∣ −1

n2 + 1

∣∣∣∣ = 1

n2 + 1
<

1

( 1
ε − 1) + 1

= ε

In Exercises 35–62, use the appropriate limit laws and theorems to determine the limit of the sequence or show that it
diverges.

35. an = 10 +
(

−1

9

)n

solution By the Limit Laws for Sequences we have:

lim
n→∞

(
10 +

(
−1

9

)n)
= lim

n→∞ 10 + lim
n→∞

(
−1

9

)n

= 10 + lim
n→∞

(
−1

9

)n

.

Now,

−
(

1

9

)n

≤
(

−1

9

)n

≤
(

1

9

)n

.

Because

lim
n→∞

(
1

9

)n

= 0,

by the Limit Laws for Sequences,

lim
n→∞ −

(
1

9

)n

= − lim
n→∞

(
1

9

)n

= 0.

Thus, we have

lim
n→∞

(
−1

9

)n

= 0,

and

lim
n→∞

(
10 +

(
−1

9

)n)
= 10 + 0 = 10.

36. dn = √
n + 3 − √

n

solution We multiply and divide dn by the conjugate expression
√

n + 3 + √
n and use the identity (a − b)(a + b) =

a2 − b2 to obtain:

dn =
(√

n + 3 − √
n
) (√

n + 3 + √
n
)

√
n + 3 + √

n
= (n + 3) − n√

n + 3 + √
n

= 3√
n + 3 + √

n
.

Thus,

lim
n→∞ dn = lim

n→∞
3√

n + 3 + √
n

= lim
x→∞

3√
x + 3 + √

x
= 0.
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37. cn = 1.01n

solution Since cn = f (n) where f (x) = 1.01x , we have

lim
n→∞ 1.01n = lim

x→∞ 1.01x = ∞

so that the sequence diverges.

38. bn = e1−n2

solution Since bn = f (n) where f (x) = e1−x2
, we have

lim
n→∞ e1−n2 = lim

x→∞ e1−x2 = lim
x→∞

e

ex2 = 0

39. an = 21/n

solution Because 2x is a continuous function,

lim
n→∞ 21/n = lim

x→∞ 21/x = 2limx→∞(1/x) = 20 = 1.

40. bn = n1/n

solution Let bn = n1/n. Take the natural logarithm of both sides of this expression to obtain

ln bn = ln n1/n = ln n

n
.

Thus,

lim
n→∞ (ln bn) = lim

n→∞
ln n

n
= lim

x→∞
ln x

x
= lim

x→∞
1

x
= 0.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ bn = lim

n→∞ eln bn = elimn→∞(ln bn) = e0 = 1.

That is,

lim
n→∞ n1/n = 1.

41. cn = 9n

n!
solution For n ≥ 9, write

cn = 9n

n! = 9

1
· 9

2
· · · 9

9︸ ︷︷ ︸
call this C

· 9

10
· 9

11
· · · 9

n − 1
· 9

n︸ ︷︷ ︸
Each factor is less than 1

Then clearly

0 ≤ 9n

n! ≤ C
9

n

since each factor after the first nine is < 1. The squeeze theorem tells us that

lim
n→∞ 0 ≤ lim

n→∞
9n

n! ≤ lim
n→∞ C

9

n
= C lim

n→∞
9

n
= C · 0 = 0

so that limn→∞ cn = 0 as well.

42. an = 82n

n!
solution Note that

an = 82n

n! = 64n

n!
Now apply the same method as in the Exercise 41. For n ≥ 64, write

cn = 64n

n! = 64

1
· 64

2
· · · 64

64︸ ︷︷ ︸
call this C

· 64

65
· 64

66
· · · 64

n − 1
· 64

n︸ ︷︷ ︸
Each factor is less than 1
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Then clearly

0 ≤ 64n

n! ≤ C
64

n

since each factor after the first 64 is < 1. The squeeze theorem tells us that

lim
n→∞ 0 ≤ lim

n→∞
64n

n! ≤ lim
n→∞ C

64

n
= C lim

n→∞
64

n
= C · 0 = 0

so that limn→∞ an = 0 as well.

43. an = 3n2 + n + 2

2n2 − 3

solution

lim
n→∞

3n2 + n + 2

2n2 − 3
= lim

x→∞
3x2 + x + 2

2x2 − 3
= 3

2
.

44. an =
√

n√
n + 4

solution

lim
n→∞

√
n√

n + 4
= lim

x→∞

√
x√

x + 4
= lim

x→∞

√
x√
x√

x√
x

+ 4√
x

= lim
x→∞

1

1 + 4√
x

= 1

1 + 0
= 1.

45. an = cos n

n

solution Since −1 ≤ cos n ≤ 1 the following holds:

− 1

n
≤ cos n

n
≤ 1

n
.

We now apply the Squeeze Theorem for Sequences and the limits

lim
n→∞ − 1

n
= lim

n→∞
1

n
= 0

to conclude that lim
n→∞

cos n
n = 0.

46. cn = (−1)n√
n

solution Clearly

− 1√
n

≤ (−1)n√
n

≤ 1√
n

Since

lim
n→∞

−1√
n

= lim
n→∞

1√
n

= 0,

the Squeeze Theorem tells us that lim
n→∞

(−1)n√
n

= 0.

47. dn = ln 5n − ln n!
solution Note that

dn = ln
5n

n!
so that

edn = 5n

n! so lim
n→∞ edn = lim

n→∞
5n

n! = 0

by the method of Exercise 41. If dn converged, we could, since f (x) = ex is continuous, then write

lim
n→∞ edn = elimn→∞ dn = 0

which is impossible. Thus {dn} diverges.
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48. dn = ln(n2 + 4) − ln(n2 − 1)

solution Note that

dn = ln
n2 + 4

n2 − 1

so exponentiating both sides of this expression gives

edn = n2 + 4

n2 − 1
= 1 + (4/n2)

1 − (1/n2)

Thus,

lim
n→∞ edn = lim

n→∞
1 + (4/n2)

1 − (1/n2)
= 1

Because f (x) = ln x is continuous for x > 0, it follows that

lim
n→∞ dn = lim

n→∞ ln(edn) = ln( lim
n→∞ edn) = ln 1 = 0

49. an =
(

2 + 4

n2

)1/3

solution Let an =
(

2 + 4
n2

)1/3
. Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
2 + 4

n2

)1/3
= 1

3
ln

(
2 + 4

n2

)
.

Thus,

lim
n→∞ ln an = lim

n→∞
1

3
ln

(
2 + 4

n2

)1/3
= 1

3
lim

x→∞ ln

(
2 + 4

x2

)
= 1

3
ln

(
lim

x→∞

(
2 + 4

x2

))

= 1

3
ln (2 + 0) = 1

3
ln 2 = ln 21/3.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = eln 21/3 = 21/3.

50. bn = tan−1
(

1 − 2

n

)
solution Because f (x) = tan−1 x is a continuous function, it follows that

lim
n→∞ an = lim

x→∞ tan−1
(

1 − 2

x

)
= tan−1

(
lim

x→∞

(
1 − 2

x

))
= tan−11 = π

4
.

51. cn = ln

(
2n + 1

3n + 4

)
solution Because f (x) = ln x is a continuous function, it follows that

lim
n→∞ cn = lim

x→∞ ln

(
2x + 1

3x + 4

)
= ln

(
lim

x→∞
2x + 1

3x + 4

)
= ln

2

3
.

52. cn = n

n + n1/n

solution We rewrite n
n+n1/n as follows:

n

n + n1/n
=

n
n

n
n + n1/n

n

= 1

1 + n1/n

n

.

Now,

n1/n

n
= n

1
n
−1 = 1

n1−1/n
,
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and

lim
n→∞

n1/n

n
= lim

n→∞
1

n1−1/n
= lim

x→∞
1

x1−1/x
= 0.

Thus,

lim
n→∞

n

n + n1/n
= lim

x→∞
1

1 + x1/x

x

= limx→∞ 1

limx→∞
(

1 + x1/x

x

) = limx→∞ 1

limx→∞ 1 + limx→∞ x1/x

x

= 1

1 + 0
= 1.

53. yn = en

2n

solution en

2n = (
e
2

)n and e
2 > 1. By the Limit of Geometric Sequences,we conclude that limn→∞

(
e
2

)n = ∞. Thus,
the given sequence diverges.

54. an = n

2n

solution

lim
n→∞

n

2n
= lim

x→∞
x

2x
= lim

x→∞
d
dx

(x)

d
dx

(2x)
= lim

x→∞
1

(ln 2) 2x
= 1

ln 2
lim

x→∞
1

2x
= 1

ln 2
· 0 = 0.

55. yn = en + (−3)n

5n

solution

lim
n→∞

en + (−3)n

5n
= lim

n→∞
( e

5

)n + lim
n→∞

(−3

5

)n

assuming both limits on the right-hand side exist. But by the Limit of Geometric Sequences, since

−1 <
−3

5
< 0 <

e

5
< 1

both limits on the right-hand side are 0, so that yn converges to 0.

56. bn = (−1)nn3 + 2−n

3n3 + 4−n

solution Assuming both limits on the right-hand side exist, we have

lim
n→∞

(−1)nn3 + 2−n

3n3 + 4−n
= lim

n→∞
(−1)nn3

3n3 + 4−n
+ lim

n→∞
2−n

3n3 + 4−n

For the first limit, let us consider instead the limit of its reciprocal:

lim
n→∞(−1)n

3n3 + 4−n

n3
= lim

n→∞(−1)n
3n3

n3
+ lim

n→∞(−1)n
4−n

n3

= lim
n→∞(−1)n · 3 + lim

n→∞(−1)n
1

4nn3

= lim
n→∞

(
(−1)n · 3

) + 0

so that one limit on the right-hand side exists and the other does not; thus the left-hand side diverges as well.

57. an = n sin
π

n

solution By the Theorem on Sequences Defined by a Function, we have

lim
n→∞ n sin

π

n
= lim

x→∞ x sin
π

x
.

Now,

lim
x→∞ x sin

π

x
= lim

x→∞
sin π

x
1
x

= lim
x→∞

(
cos π

x

) (− π
x2

)
− 1

x2

= lim
x→∞

(
π cos

π

x

)

= π lim
x→∞ cos

π

x
= π cos 0 = π · 1 = π.
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Thus,

lim
n→∞ n sin

π

n
= π.

58. bn = n!
πn

solution By the method of Exercise 41, we can see that limn→∞
4n

n! = 0 so that cn = n!
4n

diverges. But π < 4 so

that cn < bn and thus bn diverges as well.

59. bn = 3 − 4n

2 + 7 · 4n

solution Divide the numerator and denominator by 4n to obtain

an = 3 − 4n

2 + 7 · 4n
=

3
4n − 4n

4n

2
4n + 7·4n

4n

=
3
4n − 1
2
4n + 7

.

Thus,

lim
n→∞ an = lim

x→∞
3

4x − 1
2

4x + 7
=

limx→∞
(

3
4x − 1

)
limx→∞

(
2

4x + 7
) = 3 limx→∞ 1

4x − limx→∞ 1

2 limx→∞ 1
4x − limx→∞ 7

= 3 · 0 − 1

2 · 0 + 7
= −1

7
.

60. an = 3 − 4n

2 + 7 · 3n

solution Divide the numerator and denominator by 3n to obtain

an = 3 − 4n

2 + 7 · 3n
=

3
3n − 4n

3n

2
3n + 7·3n

3n

=
3
3n −

(
4
3

)n

2
3n + 7

.

We examine the limits of the numerator and the denominator:

lim
n→∞

(
3

3n
−
(

4

3

)n)
= 3 lim

n→∞

(
1

3

)n

− 3 lim
n→∞

(
4

3

)n

= 3 · 0 − ∞ = −∞,

whereas

lim
n→∞

(
2

3n
+ 7

)
= lim

n→∞
2

3n
+ lim

n→∞ 7 = 2 lim
n→∞

(
1

3

)n

+ lim
n→∞ 7 = 2 · 0 + 7 = 7.

Thus, lim
n→∞ an = −∞; that is, the sequence diverges.

61. an =
(

1 + 1

n

)n

solution Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
1 + 1

n

)n

= n ln

(
1 + 1

n

)
=

ln
(

1 + 1
n

)
1
n

.

Thus,

lim
n→∞ (ln an) = lim

x→∞
ln
(

1 + 1
x

)
1
x

= lim
x→∞

d
dx

(
ln
(

1 + 1
x

))
d
dx

(
1
x

) = lim
x→∞

1
1+ 1

x

·
(
− 1

x2

)
− 1

x2

= lim
x→∞

1

1 + 1
x

= 1

1 + 0
= 1.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = e1 = e.
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62. an =
(

1 + 1

n2

)n

solution Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
1 + 1

n2

)n

= n ln

(
1 + 1

n2

)
=

ln
(

1 + 1
n2

)
1
n

.

Thus,

lim
n→∞ (ln an) = lim

x→∞
ln(1 + x−2)

x−1
= lim

x→∞

d
dx

(
ln(1 + x−2)

)
d
dx

(x−1)

= lim
x→∞

1
1+x−2 (−2x−3)

−x−2
= lim

x→∞
2x−1

1 + x−2
= lim

x→∞
2
x

1 + 1
x2

= 0

1 + 0
= 0.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = e0 = 1.

In Exercises 63–66, find the limit of the sequence using L’Hôpital’s Rule.

63. an = (ln n)2

n

solution

lim
n→∞

(ln n)2

n
= lim

x→∞
(ln x)2

x
= lim

x→∞
d
dx

(ln x)2

d
dx

x
= lim

x→∞
2 ln x

x

1
= lim

x→∞
2 ln x

x

= lim
x→∞

d
dx

2 ln x

d
dx

x
= lim

x→∞
2
x

1
= lim

x→∞
2

x
= 0

64. bn = √
n ln

(
1 + 1

n

)
solution

lim
n→∞

√
n ln

(
1 + 1

n

)
= lim

x→∞
√

x ln

(
1 + 1

x

)
= lim

x→∞
ln
(

1 + 1
x

)
x−1/2

= lim
x→∞

d
dx

ln
(

1 + 1
x

)
d
dx

x−1/2

= lim
x→∞

1
1+ 1

x

·
(−1

x2

)
−1
2 x−3/2

= lim
x→∞

2
√

x
(

1 + 1
x

) = 0

65. cn = n
(√

n2 + 1 − n
)

solution

lim
n→∞ n

(√
n2 + 1 − n

)
= lim

x→∞ x
(√

x2 + 1 − x
)

= lim
x→∞

x
(√

x2 + 1 − x
) (√

x2 + 1 + x
)

√
x2 + 1 + x

= lim
x→∞

x√
x2 + 1 + x

= lim
x→∞

d
dx

x

d
dx

√
x2 + 1 + x

= lim
x→∞

1

1 + x√
x2+1

= lim
x→∞

1

1 +
√

x2

x2+1

= lim
x→∞

1

1 +
√

1
1+(1/x2)

= 1

2

66. dn = n2( 3
√

n3 + 1 − n
)

solution We rewrite dn as follows:

dn = n2
(

3
√

n3 + 1 − n
)

= n2

(
3

√
n3

(
1 + 1

n3

)
− n

)
= n2

(
n

3

√
1 + 1

n3
− n

)

= n3

(
3

√
1 + 1

n3
− 1

)
=

(
(1 + n−3)

1/3 − 1
)

n−3
.
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Thus,

lim
n→∞ dn = lim

x→∞
(1 + x−3)

1/3 − 1

x−3
= lim

x→∞

d
dx

[
(1 + x−3)

1/3 − 1
]

d
dx

[x−3]

= lim
x→∞

1
3 (1 + x−3)

−2/3
(−3x−4)

−3x−4
= lim

x→∞
1

3
(1 + x−3)

−2/3 = lim
x→∞

1

3
(

1 + 1
x3

)2/3
= 1

3
.

In Exercises 67–70, use the Squeeze Theorem to evaluate lim
n→∞ an by verifying the given inequality.

67. an = 1√
n4 + n8

,
1√
2n4

≤ an ≤ 1√
2n2

solution For all n > 1 we have n4 < n8, so the quotient 1√
n4+n8

is smaller than 1√
n4+n4

and larger than 1√
n8+n8

.

That is,

an <
1√

n4 + n4
= 1√

n4 · 2
= 1√

2n2
; and

an >
1√

n8 + n8
= 1√

2n8
= 1√

2n4
.

Now, since lim
n→∞

1√
2n4

= lim
n→∞

1√
2n2

= 0, the Squeeze Theorem for Sequences implies that lim
n→∞ an = 0.

68. cn = 1√
n2 + 1

+ 1√
n2 + 2

+ · · · + 1√
n2 + n

,

n√
n2 + n

≤ cn ≤ n√
n2 + 1

solution Since each of the n terms in the sum defining cn is not smaller than 1√
n2+n

and not larger than 1√
n2+1

we

obtain the following inequalities:

cn ≥ 1√
n2 + n

+ · · · + 1√
n2 + n︸ ︷︷ ︸

n terms

= n · 1√
n2 + n

= n√
n2 + n

;

cn ≤ 1√
n2 + 1

+ · · · + 1√
n2 + 1︸ ︷︷ ︸

n terms

= n · 1√
n2 + 1

= n√
n2 + 1

.

Thus,

n√
n2 + n

≤ cn ≤ n√
n2 + 1

.

We now compute the limits of the two sequences:

lim
n→∞

n√
n2 + 1

= lim
n→∞

n
n√

n2+1
n

= lim
n→∞

1√
n2+1√
n2

= lim
n→∞

1√
1 + 1

n2

= 1;

lim
n→∞

n√
n2 + n

= lim
n→∞

n
n√

n2+n
n

= lim
n→∞

1√
n2+n√
n2

= lim
n→∞

1√
1 + 1

n

= 1.

By the Squeeze Theorem we conclude that:

lim
n→∞ cn = 1.

69. an = (2n + 3n)1/n, 3 ≤ an ≤ (2 · 3n)1/n = 21/n · 3

solution Clearly 2n + 3n ≥ 3n for all n ≥ 1. Therefore:

(2n + 3n)
1/n ≥ (3n)

1/n = 3.
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Also 2n + 3n ≤ 3n + 3n = 2 · 3n, so

(2n + 3n)
1/n ≤ (2 · 3n)

1/n = 21/n · 3.

Thus,

3 ≤ (2n + 3n)
1/n ≤ 21/n · 3.

Because

lim
n→∞ 21/n · 3 = 3 lim

n→∞ 21/n = 3 · 1 = 3

and limn→∞ 3 = 3, the Squeeze Theorem for Sequences guarantees

lim
n→∞ (2n + 3n)

1/n = 3.

70. an = (n + 10n)1/n, 10 ≤ an ≤ (2 · 10n)1/n

solution Clearly

10n ≤ n + 10n ≤ 10n + 10n = 2 · 10n

for all n ≥ 0. Thus

10 ≤ (n + 10n)1/n ≤ (2 · 10n)1/n

Now,

lim
n→∞(2 · 10n)1/n = lim

n→∞ 21/n · 10 = 10 lim
n→∞ 21/n = 10 · 1 = 10

and limn→∞ 10 = 10, so that the Squeeze Theorem for Sequences tells us that

lim
n→∞(n + 10n)1/n = 10

71. Which of the following statements is equivalent to the assertion lim
n→∞ an = L? Explain.

(a) For every ε > 0, the interval (L − ε, L + ε) contains at least one element of the sequence {an}.
(b) For every ε > 0, the interval (L − ε, L + ε) contains all but at most finitely many elements of the sequence {an}.
solution Statement (b) is equivalent to Definition 1 of the limit, since the assertion “|an − L| < ε for all n > M”
means that L − ε < an < L + ε for all n > M; that is, the interval (L − ε, L + ε) contains all the elements an except
(maybe) the finite number of elements a1, a2, . . . , aM .

Statement (a) is not equivalent to the assertion lim
n→∞ an = L. We show this, by considering the following sequence:

an =

⎧⎪⎪⎨
⎪⎪⎩

1

n
for odd n

1 + 1

n
for even n

Clearly for every ε > 0, the interval (−ε, ε) = (L − ε, L + ε) for L = 0 contains at least one element of {an}, but the
sequence diverges (rather than converges to L = 0). Since the terms in the odd places converge to 0 and the terms in the
even places converge to 1. Hence, an does not approach one limit.

72. Show that an = 1

2n + 1
is decreasing.

solution Let f (x) = 1
2x+1 . Then

f ′(x) = − 1

(2x + 1)2
· 2 = −2

(2x + 1)2
< 0 for x 	= −1

2
.

Since f ′(x) < 0 for x 	= − 1
2 , f is decreasing on the interval x > − 1

2 . It follows that an = f (n) is also decreasing.
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73. Show that an = 3n2

n2 + 2
is increasing. Find an upper bound.

solution Let f (x) = 3x2

x2+2
. Then

f ′(x) = 6x(x2 + 2) − 3x2 · 2x

(x2 + 2)
2

= 12x

(x2 + 2)
2
.

f ′(x) > 0 for x > 0, hence f is increasing on this interval. It follows that an = f (n) is also increasing. We now show
that M = 3 is an upper bound for an, by writing:

an = 3n2

n2 + 2
≤ 3n2 + 6

n2 + 2
= 3(n2 + 2)

n2 + 2
= 3.

That is, an ≤ 3 for all n.

74. Show that an = 3√
n + 1 − n is decreasing.

solution Let f (x) = 3√
x + 1 − x. Then

f ′(x) = d

dx

(
(x + 1)1/3 − x

)
= 1

3
(x + 1)−2/3 − 1.

For x ≥ 1,

1

3
(x + 1)−2/3 − 1 ≤ 1

3
2−2/3 − 1 < 0.

We conclude that f is decreasing on the interval x ≥ 1. It follows that an = f (n) is also decreasing.

75. Give an example of a divergent sequence {an} such that lim
n→∞ |an| converges.

solution Let an = (−1)n. The sequence {an} diverges because the terms alternate between +1 and −1; however, the
sequence {|an|} converges because it is a constant sequence, all of whose terms are equal to 1.

76. Give an example of divergent sequences {an} and {bn} such that {an + bn} converges.

solution Let an = 2n and bn = −2n. Then {an} and {bn} are divergent geometric sequences. However, since
an + bn = 2n − 2n = 0, the sequence {an + bn} is the constant sequence with all the terms equal zero, so it converges
to zero.

77. Using the limit definition, prove that if {an} converges and {bn} diverges, then {an + bn} diverges.

solution We will prove this result by contradiction. Suppose limn→∞ an = L1 and that {an + bn} converges to a
limit L2. Now, let ε > 0. Because {an} converges to L1 and {an + bn} converges to L2, it follows that there exist numbers
M1 and M2 such that:

|an − L1| <
ε

2
for all n > M1,

| (an + bn) − L2| <
ε

2
for all n > M2.

Thus, for n > M = max{M1, M2},

|an − L1| <
ε

2
and | (an + bn) − L2| <

ε

2
.

By the triangle inequality,

|bn − (L2 − L1)| = |an + bn − an − (L2 − L1)| = |(−an + L1) + (an + bn − L2)|
≤ |L1 − an| + |an + bn − L2|.

Thus, for n > M ,

|bn − (L2 − L1) | <
ε

2
+ ε

2
= ε;

that is, {bn} converges to L2 − L1, in contradiction to the given data. Thus, {an + bn} must diverge.
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78. Use the limit definition to prove that if {an} is a convergent sequence of integers with limit L, then there exists a
number M such that an = L for all n ≥ M .

solution Suppose {an} converges to L, and let ε = 1
2 . Then, there exists a number M such that

|an − L| <
1

2

for all n ≥ M . In other words, for all n ≥ M ,

L − 1

2
< an < L + 1

2
.

However, we are given that {an} is a sequence of integers. Thus, it must be that an = L for all n ≥ M .

79. Theorem 1 states that if lim
x→∞ f (x) = L, then the sequence an = f (n) converges and lim

n→∞ an = L. Show that the

converse is false. In other words, find a function f (x) such that an = f (n) converges but lim
x→∞ f (x) does not exist.

solution Let f (x) = sin πx and an = sin πn. Then an = f (n). Since sin πx is oscillating between −1 and 1 the
limit lim

x→∞ f (x) does not exist. However, the sequence {an} is the constant sequence in which an = sin πn = 0 for all n,

hence it converges to zero.

80. Use the limit definition to prove that the limit does not change if a finite number of terms are added or removed from
a convergent sequence.

solution Suppose that {an} is a sequence such that limn→∞ an = L. For every ε > 0, there is a number M such that
|an − L| < ε for all n > M . That is, the inequality |an − L| < ε holds for all the terms of {an} except possibly a finite
number of terms. If we add a finite number of terms, these terms may not satisfy the inequality |an − L| < ε, but there are
still only a finite number of terms that do not satisfy this inequality. By removing terms from the sequence, the number
of terms in the new sequence that do not satisfy |an − L| < ε are no more than in the original sequence. Hence the new
sequence also converges to L.

81. Let bn = an+1. Use the limit definition to prove that if {an} converges, then {bn} also converges and lim
n→∞ an =

lim
n→∞ bn.

solution Suppose {an} converges to L. Let bn = an+1, and let ε > 0. Because {an} converges to L, there exists an
M ′ such that |an − L| < ε for n > M ′. Now, let M = M ′ − 1. Then, whenever n > M , n + 1 > M + 1 = M ′. Thus,
for n > M ,

|bn − L| = |an+1 − L| < ε.

Hence, {bn} converges to L.

82. Let {an} be a sequence such that lim
n→∞ |an| exists and is nonzero. Show that lim

n→∞ an exists if and only if there exists

an integer M such that the sign of an does not change for n > M .

solution Let {an} be a sequence such that lim
n→∞ |an| exists and is nonzero. Suppose lim

n→∞ an exists and let

L = lim
n→∞ an. Note that L cannot be zero for then lim

n→∞ |an| would also be zero. Now, choose ε < |L|. Then there exists

an integer M such that |an − L| < ε, or L − ε < an < L + ε, for all n > M . If L < 0, then −2L < an < 0, whereas if
L > 0, then 0 < an < 2L; that is, an does not change for n > M .

Now suppose that there exists an integer M such that an does not change for n > M . If an > 0 for n > M , then
an = |an| for n > M and

lim
n→∞ an = lim

n→∞ |an|.

On the other hand, if an < 0 for n > M , then an = −|an| for n > M and

lim
n→∞ an = lim

n→∞ −|an| = − lim
n→∞ |an|.

In either case, lim
n→∞ an exists. Thus, lim

n→∞ an exists if and only if there exists an integer M such that the sign of an does

not change for n > M .

83. Proceed as in Example 12 to show that the sequence
√

3,

√
3
√

3,

√
3

√
3
√

3, . . . is increasing and bounded above by
M = 3. Then prove that the limit exists and find its value.

solution This sequence is defined recursively by the formula:

an+1 = √
3an, a1 = √

3.
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Consider the following inequalities:

a2 = √
3a1 =

√
3
√

3 >
√

3 = a1 ⇒ a2 > a1;
a3 = √

3a2 >
√

3a1 = a2 ⇒ a3 > a2;
a4 = √

3a3 >
√

3a2 = a3 ⇒ a4 > a3.

In general, if we assume that ak > ak−1, then

ak+1 = √
3ak >

√
3ak−1 = ak.

Hence, by mathematical induction, an+1 > an for all n; that is, the sequence {an} is increasing.
Because an+1 = √

3an, it follows that an ≥ 0 for all n. Now, a1 = √
3 < 3. If ak ≤ 3, then

ak+1 = √
3ak ≤ √

3 · 3 = 3.

Thus, by mathematical induction, an ≤ 3 for all n.
Since {an} is increasing and bounded, it follows by the Theorem on Bounded Monotonic Sequences that this sequence

is converging. Denote the limit by L = limn→∞ an. Using Exercise 81, it follows that

L = lim
n→∞ an+1 = lim

n→∞
√

3an =
√

3 lim
n→∞ an = √

3L.

Thus, L2 = 3L, so L = 0 or L = 3. Because the sequence is increasing, we have an ≥ a1 = √
3 for all n. Hence, the

limit also satisfies L ≥ √
3. We conclude that the appropriate solution is L = 3; that is, lim

n→∞ an = 3.

84. Let {an} be the sequence defined recursively by

a0 = 0, an+1 = √
2 + an

Thus, a1 = √
2, a2 =

√
2 + √

2, a3 =
√

2 +
√

2 + √
2, . . . .

(a) Show that if an < 2, then an+1 < 2. Conclude by induction that an < 2 for all n.

(b) Show that if an < 2, then an ≤ an+1. Conclude by induction that {an} is increasing.

(c) Use (a) and (b) to conclude that L = lim
n→∞ an exists. Then compute L by showing that L = √

2 + L.

solution

(a) Assume an < 2. Then

an+1 = √
2 + an <

√
2 + 2 = 2

so that an+1 < 2. So by induction, an < 2 for all n and {an} is bounded above by 2.

(b) Assume an < 2. Then

an+1 = √
2 + an >

√
an + an = √

2an >

√
a2
n = an

so that an < an+1. It follows by induction that {an} is increasing.

(c) Since {an} is increasing and bounded above, the Theorem on Bounded Monotone Sequences tells us that L =
limn→∞ an exists. We have

L = lim
n→∞ an+1 = lim

n→∞
√

2 + an =
√

2 + lim
n→∞ an = √

2 + L

by Exercise 81. It follows that L = √
2 + L, so that L2 − L − 2 = 0. Thus L = 2 or L = −1. But all terms of {an} are

positive, so we must have L = 2.

Further Insights and Challenges
85. Show that lim

n→∞
n
√

n! = ∞. Hint: Verify that n! ≥ (n/2)n/2 by observing that half of the factors of n! are greater

than or equal to n/2.

solution We show that n! ≥ (
n
2

)n/2. For n ≥ 4 even, we have:

n! = 1 · · · · · n

2︸ ︷︷ ︸
n
2 factors

·
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

≥
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

.



March 31, 2011

1220 C H A P T E R 10 INFINITE SERIES

Since each one of the n
2 factors is greater than n

2 , we have:

n! ≥
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

≥ n

2
· · · · · n

2︸ ︷︷ ︸
n
2 factors

=
(n

2

)n/2
.

For n ≥ 3 odd, we have:

n! = 1 · · · · · n − 1

2︸ ︷︷ ︸
n−1

2 factors

· n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

≥ n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

.

Since each one of the n+1
2 factors is greater than n

2 , we have:

n! ≥ n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

≥ n

2
· · · · · n

2︸ ︷︷ ︸
n+1

2 factors

=
(n

2

)(n+1)/2 =
(n

2

)n/2
√

n

2
≥
(n

2

)n/2
.

In either case we have n! ≥ (
n
2

)n/2. Thus,

n
√

n! ≥
√

n

2
.

Since lim
n→∞

√
n
2 = ∞, it follows that lim

n→∞
n
√

n! = ∞. Thus, the sequence an = n
√

n! diverges.

86. Let bn =
n
√

n!
n

.

(a) Show that ln bn = 1

n

n∑
k=1

ln
k

n
.

(b) Show that ln bn converges to
∫ 1

0
ln x dx, and conclude that bn → e−1.

solution

(a) Let bn = (n!)1/n

n . Then

ln bn = ln (n!)1/n − ln n = 1

n
ln (n!) − ln n = ln (n!) − n ln n

n
= 1

n

[
ln (n!) − ln nn

] = 1

n
ln

n!
nn

= 1

n
ln

(
1

n
· 2

n
· 3

n
· · · · · n

n

)
= 1

n

(
ln

1

n
+ ln

2

n
+ ln

3

n
+ · · · + ln

n

n

)
= 1

n

n∑
k=1

ln
k

n
.

(b) By part (a) we have,

lim
n→∞ (ln bn) = lim

n→∞
1

n

n∑
k=1

ln
k

n
.

Notice that 1
n

∑n
k=1 ln k

n is the nth right-endpoint approximation of the integral of ln x over the interval [0, 1]. Hence,

lim
n→∞

1

n

n∑
k=1

ln
k

n
=
∫ 1

0
ln x dx.

We compute the improper integral using integration by parts, with u = ln x and v′ = 1. Then u′ = 1
x , v = x and

∫ 1

0
ln x dx = x ln x

∣∣∣∣1
0

−
∫ 1

0

1

x
x dx = 1 · ln 1 − lim

x→0+ (x ln x) −
∫ 1

0
dx

= 0 − lim
x→0+ (x ln x) − x

∣∣∣∣1
0

= −1 − lim
x→0+ (x ln x) .

We compute the remaining limit using L’Hôpital’s Rule. This gives:

lim
x→0+(x · ln x) = lim

x→0+
ln x

1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+(−x) = 0.
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Thus,

lim
n→∞ ln bn =

∫ 1

0
ln x dx = −1,

and

lim
n→∞ bn = e−1.

87. Given positive numbers a1 < b1, define two sequences recursively by

an+1 = √
anbn, bn+1 = an + bn

2

(a) Show that an ≤ bn for all n (Figure 13).

(b) Show that {an} is increasing and {bn} is decreasing.

(c) Show that bn+1 − an+1 ≤ bn − an

2
.

(d) Prove that both {an} and {bn} converge and have the same limit. This limit, denoted AGM(a1, b1), is called the
arithmetic-geometric mean of a1 and b1.

(e) Estimate AGM(1,
√

2) to three decimal places.

x
an an+1 bn+1 bn

Geometric
mean

AGM(a1, b1)

Arithmetic
mean

FIGURE 13

solution

(a) Examine the following:

bn+1 − an+1 = an + bn

2
− √

anbn = an + bn − 2
√

anbn

2
=

(√
an

)2 − 2
√

an
√

bn + (√
bn

)2

2

=
(√

an − √
bn

)2

2
≥ 0.

We conclude that bn+1 ≥ an+1 for all n > 1. By the given information b1 > a1; hence, bn ≥ an for all n.

(b) By part (a), bn ≥ an for all n, so

an+1 = √
anbn ≥ √

an · an =
√

a2
n = an

for all n. Hence, the sequence {an} is increasing. Moreover, since an ≤ bn for all n,

bn+1 = an + bn

2
≤ bn + bn

2
= 2bn

2
= bn

for all n; that is, the sequence {bn} is decreasing.

(c) Since {an} is increasing, an+1 ≥ an. Thus,

bn+1 − an+1 ≤ bn+1 − an = an + bn

2
− an = an + bn − 2an

2
= bn − an

2
.

Now, by part (a), an ≤ bn for all n. By part (b), {bn} is decreasing. Hence bn ≤ b1 for all n. Combining the two inequalities
we conclude that an ≤ b1 for all n. That is, the sequence {an} is increasing and bounded (0 ≤ an ≤ b1). By the Theorem
on Bounded Monotonic Sequences we conclude that {an} converges. Similarly, since {an} is increasing, an ≥ a1 for all
n. We combine this inequality with bn ≥ an to conclude that bn ≥ a1 for all n. Thus, {bn} is decreasing and bounded
(a1 ≤ bn ≤ b1); hence this sequence converges.

To show that {an} and {bn} converge to the same limit, note that

bn − an ≤ bn−1 − an−1

2
≤ bn−2 − an−2

22
≤ · · · ≤ b1 − a1

2n−1
.

Thus,

lim
n→∞(bn − an) = (b1 − a1) lim

n→∞
1

2n−1
= 0.
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(d) We have

an+1 = √
anbn, a1 = 1; bn+1 = an + bn

2
, b1 = √

2

Computing the values of an and bn until the first three decimal digits are equal in successive terms, we obtain:

a2 = √
a1b1 =

√
1 · √

2 = 1.1892

b2 = a1 + b1

2
= 1 + √

2

2
= 1.2071

a3 = √
a2b2 = √

1.1892 · 1.2071 = 1.1981

b3 = a2 + b2

2
= 1.1892 · 1.2071

2
= 1.1981

a4 = √
a3b3 = 1.1981

b4 = a3 + b3

2
= 1.1981

Thus,

AGM
(

1,
√

2
)

≈ 1.198.

88. Let cn = 1

n
+ 1

n + 1
+ 1

n + 2
+ · · · + 1

2n
.

(a) Calculate c1, c2, c3, c4.

(b) Use a comparison of rectangles with the area under y = x−1 over the interval [n, 2n] to prove that∫ 2n

n

dx

x
+ 1

2n
≤ cn ≤

∫ 2n

n

dx

x
+ 1

n

(c) Use the Squeeze Theorem to determine lim
n→∞ cn.

solution
(a)

c1 = 1 + 1

2
= 3

2
;

c2 = 1

2
+ 1

3
+ 1

4
= 13

12
;

c3 = 1

3
+ 1

4
+ 1

5
+ 1

6
= 19

20
;

c4 = 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
= 743

840
;

(b) We consider the left endpoint approximation to the integral of y = 1
x over the interval [n, 2n]. Since the function

y = 1
x is decreasing, the left endpoint approximation is greater than

∫ 2n
n

dx
x ; that is,

∫ 2n

n

dx

x
≤ 1

n
· 1 + 1

n + 1
· 1 + 1

n + 2
· 1 + · · · + 1

2n − 1
· 1.

1

1

y

x
0 2 3 n n + 1

1/n

1
2

1
3

y = 1
x

We express the right hand-side of the inequality in terms of cn, obtaining:∫ 2n

n

dx

x
≤ cn − 1

2n
.
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We now consider the right endpoint approximation to the integral
∫ 2n
n

dx
x ; that is,

1

n + 1
· 1 + 1

n + 2
· 1 + · · · + 1

2n
· 1 ≤

∫ 2n

n

dx

x
.

y

x
0 n n + 1

y = 1
x

1
n + 1

We express the left hand-side of the inequality in terms of cn, obtaining:

cn − 1

n
≤
∫ 2n

n

dx

x
.

Thus, ∫ 2n

n

dx

x
+ 1

2n
≤ cn ≤

∫ 2n

n

dx

x
+ 1

n
.

(c) With ∫ 2n

n

dx

x
= ln x|2n

n = ln 2n − ln n = ln
2n

n
= ln 2,

the result from part (b) becomes

ln 2 + 1

2n
≤ cn ≤ ln 2 + 1

n
.

Because

lim
n→∞

1

2n
= lim

n→∞
1

n
= 0,

it follows from the Squeeze Theorem that

lim
n→∞ cn = ln 2.

89. Let an = Hn − ln n, where Hn is the nth harmonic number

Hn = 1 + 1

2
+ 1

3
+ · · · + 1

n

(a) Show that an ≥ 0 for n ≥ 1. Hint: Show that Hn ≥
∫ n+1

1

dx

x
.

(b) Show that {an} is decreasing by interpreting an − an+1 as an area.
(c) Prove that lim

n→∞ an exists.

This limit, denoted γ , is known as Euler’s Constant. It appears in many areas of mathematics, including analysis and
number theory, and has been calculated to more than 100 million decimal places, but it is still not known whether γ is an
irrational number. The first 10 digits are γ ≈ 0.5772156649.

solution

(a) Since the function y = 1
x is decreasing, the left endpoint approximation to the integral

∫ n+1
1

dx
x is greater than this

integral; that is,

1 · 1 + 1

2
· 1 + 1

3
· 1 + · · · + 1

n
· 1 ≥

∫ n+1

1

dx

x

or

Hn ≥
∫ n+1

1

dx

x
.
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1

1

y

x
2 3 n n + 1

1/n

1
2 1

3

Moreover, since the function y = 1
x is positive for x > 0, we have:

∫ n+1

1

dx

x
≥
∫ n

1

dx

x
.

Thus,

Hn ≥
∫ n

1

dx

x
= ln x

∣∣∣n
1

= ln n − ln 1 = ln n,

and

an = Hn − ln n ≥ 0 for all n ≥ 1.

(b) To show that {an} is decreasing, we consider the difference an − an+1:

an − an+1 = Hn − ln n − (
Hn+1 − ln(n + 1)

) = Hn − Hn+1 + ln(n + 1) − ln n

= 1 + 1

2
+ · · · + 1

n
−
(

1 + 1

2
+ · · · + 1

n
+ 1

n + 1

)
+ ln(n + 1) − ln n

= − 1

n + 1
+ ln(n + 1) − ln n.

Now, ln(n + 1) − ln n = ∫ n+1
n

dx
x , whereas 1

n+1 is the right endpoint approximation to the integral
∫ n+1
n

dx
x . Recalling

y = 1
x is decreasing, it follows that

∫ n+1

n

dx

x
≥ 1

n + 1

y

x
n n + 1

y = 1
x

1
n + 1

so

an − an+1 ≥ 0.

(c) By parts (a) and (b), {an} is decreasing and 0 is a lower bound for this sequence. Hence 0 ≤ an ≤ a1 for all n. A
monotonic and bounded sequence is convergent, so limn→∞ an exists.

10.2 Summing an Infinite Series

Preliminary Questions
1. What role do partial sums play in defining the sum of an infinite series?

solution The sum of an infinite series is defined as the limit of the sequence of partial sums. If the limit of this sequence
does not exist, the series is said to diverge.
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2. What is the sum of the following infinite series?

1

4
+ 1

8
+ 1

16
+ 1

32
+ 1

64
+ · · ·

solution This is a geometric series with c = 1
4 and r = 1

2 . The sum of the series is therefore

1
4

1 − 1
2

=
1
4
1
2

= 1

2
.

3. What happens if you apply the formula for the sum of a geometric series to the following series? Is the formula valid?

1 + 3 + 32 + 33 + 34 + · · ·

solution This is a geometric series with c = 1 and r = 3. Applying the formula for the sum of a geometric series
then gives

∞∑
n=0

3n = 1

1 − 3
= −1

2
.

Clearly, this is not valid: a series with all positive terms cannot have a negative sum. The formula is not valid in this case
because a geometric series with r = 3 diverges.

4. Arvind asserts that
∞∑

n=1

1

n2
= 0 because

1

n2
tends to zero. Is this valid reasoning?

solution Arvind’s reasoning is not valid. Though the terms in the series do tend to zero, the general term in the
sequence of partial sums,

Sn = 1 + 1

22
+ 1

32
+ · · · + 1

n2
,

is clearly larger than 1. The sum of the series therefore cannot be zero.

5. Colleen claims that
∞∑

n=1

1√
n

converges because

lim
n→∞

1√
n

= 0

Is this valid reasoning?

solution Colleen’s reasoning is not valid. Although the general term of a convergent series must tend to zero, a series

whose general term tends to zero need not converge. In the case of
∞∑

n=1

1√
n

, the series diverges even though its general

term tends to zero.

6. Find an N such that SN > 25 for the series
∞∑

n=1

2.

solution The N th partial sum of the series is:

SN =
N∑

n=1

2 = 2 + · · · + 2︸ ︷︷ ︸
N

= 2N.

7. Does there exist an N such that SN > 25 for the series
∞∑

n=1

2−n? Explain.

solution The series
∞∑

n=1

2−n is a convergent geometric series with the common ratio r = 1

2
. The sum of the series is:

S =
1
2

1 − 1
2

= 1.

Notice that the sequence of partial sums {SN } is increasing and converges to 1; therefore SN ≤ 1 for all N . Thus, there
does not exist an N such that SN > 25.
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8. Give an example of a divergent infinite series whose general term tends to zero.

solution Consider the series
∞∑

n=1

1

n
9
10

. The general term tends to zero, since lim
n→∞

1

n
9
10

= 0. However, the N th partial

sum satisfies the following inequality:

SN = 1

1
9

10

+ 1

2
9

10

+ · · · + 1

N
9
10

≥ N

N
9

10

= N1− 9
10 = N

1
10 .

That is, SN ≥ N
1
10 for all N . Since lim

N→∞N
1

10 = ∞, the sequence of partial sums Sn diverges; hence, the series
∞∑

n=1

1

n
9
10

diverges.

Exercises
1. Find a formula for the general term an (not the partial sum) of the infinite series.

(a)
1

3
+ 1

9
+ 1

27
+ 1

81
+ · · · (b)

1

1
+ 5

2
+ 25

4
+ 125

8
+ · · ·

(c)
1

1
− 22

2 · 1
+ 33

3 · 2 · 1
− 44

4 · 3 · 2 · 1
+ · · ·

(d)
2

12 + 1
+ 1

22 + 1
+ 2

32 + 1
+ 1

42 + 1
+ · · ·

solution

(a) The denominators of the terms are powers of 3, starting with the first power. Hence, the general term is:

an = 1

3n
.

(b) The numerators are powers of 5, and the denominators are the same powers of 2. The first term is a1 = 1 so,

an =
(

5

2

)n−1
.

(c) The general term of this series is,

an = (−1)n+1 nn

n! .

(d) Notice that the numerators of an equal 2 for odd values of n and 1 for even values of n. Thus,

an =

⎧⎪⎪⎨
⎪⎪⎩

2

n2 + 1
odd n

1

n2 + 1
even n

The formula can also be rewritten as follows:

an = 1 + (−1)n+1+1
2

n2 + 1
.

2. Write in summation notation:

(a) 1 + 1

4
+ 1

9
+ 1

16
+ · · · (b)

1

9
+ 1

16
+ 1

25
+ 1

36
+ · · ·

(c) 1 − 1

3
+ 1

5
− 1

7
+ · · ·

(d)
125

9
+ 625

16
+ 3125

25
+ 15,625

36
+ · · ·

solution

(a) The general term is an = 1

n2
, n = 1, 2, 3, . . .; hence, the series is

∞∑
n=1

1

n2
.
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(b) The general term is an = 1

n2
, n = 3, 4, 5, . . . or an = 1

(n + 2)2
, n = 1, 2, 3, . . .; hence, the series is

∞∑
n=3

1

n2
=

∞∑
n=1

1

(n + 2)2
.

(c) The general term is an = (−1)n+1

2n − 1
, n = 1, 2, 3, . . .; hence, the series is

∞∑
n=1

(−1)n+1

2n − 1
.

(d) The general term is an = 5n

n2
, n = 3, 4, 5, . . . or an = 5n+2

(n + 2)2
, n = 1, 2, 3, . . .; hence, the series is

∞∑
n=3

5n

n2
=

∞∑
n=1

5n+2

(n + 2)2
.

In Exercises 3–6, compute the partial sums S2, S4, and S6.

3. 1 + 1

22
+ 1

32
+ 1

42
+ · · ·

solution

S2 = 1 + 1

22
= 5

4
;

S4 = 1 + 1

22
+ 1

32
+ 1

42
= 205

144
;

S6 = 1 + 1

22
+ 1

32
+ 1

42
+ 1

52
+ 1

62
= 5369

3600
.

4.
∞∑

k=1

(−1)kk−1

solution

S2 = (−1)1 · 1−1 + (−1)2 · 2−1 = −1 + 1

2
= −1

2
;

S4 = (−1)1 · 1−1 + (−1)2 · 2−1 + (−1)3 · 3−1 + (−1)4 · 4−1 = S2 − 1

3
+ 1

4
= −1

2
− 1

3
+ 1

4
= − 7

12
;

S6 = − 7

12
+ (−1)5 · 5−1 + (−1)6 · 6−1 = − 7

12
− 1

5
+ 1

6
= −37

60
.

5.
1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · ·

solution

S2 = 1

1 · 2
+ 1

2 · 3
= 1

2
+ 1

6
= 4

6
= 2

3
;

S4 = S2 + a3 + a4 = 2

3
+ 1

3 · 4
+ 1

4 · 5
= 2

3
+ 1

12
+ 1

20
= 4

5
;

S6 = S4 + a5 + a6 = 4

5
+ 1

5 · 6
+ 1

6 · 7
= 4

5
+ 1

30
+ 1

42
= 6

7
.

6.
∞∑

j=1

1

j !

solution

S2 = 1

1! + 1

2! = 1 + 1

2
= 3

2
;

S4 = S2 + 1

3! + 1

4! = 3

2
+ 1

6
+ 1

24
= 41

24
;

S6 = S4 + 1

5! + 1

6! = 41

24
+ 1

120
+ 1

720
= 1237

720
.
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7. The series S = 1 + ( 1
5

) + ( 1
5

)2 + ( 1
5

)3 + · · · converges to 5
4 . Calculate SN for N = 1, 2, . . . until you find an SN

that approximates 5
4 with an error less than 0.0001.

solution

S1 = 1

S2 = 1 + 1

5
= 6

5
= 1.2

S3 = 1 + 1

5
+ 1

25
= 31

25
= 1.24

S3 = 1 + 1

5
+ 1

25
+ 1

125
= 156

125
= 1.248

S4 = 1 + 1

5
+ 1

25
+ 1

125
+ 1

625
= 781

625
= 1.2496

S5 = 1 + 1

5
+ 1

25
+ 1

125
+ 1

625
+ 1

3125
= 3906

3125
= 1.24992

Note that

1.25 − S5 = 1.25 − 1.24992 = 0.00008 < 0.0001

8. The series S = 1

0! − 1

1! + 1

2! − 1

3! + · · · is known to converge to e−1 (recall that 0! = 1). Calculate SN for N =
1, 2, . . . until you find an SN that approximates e−1 with an error less than 0.001.

solution The general term of the series is

an = (−1)n−1

(n − 1)! ;

thus, the N th partial sum of the series is

SN =
N∑

n=1

an =
N∑

n=1

(−1)n−1

(n − 1)! = 1

0! − 1

1! + 1

2! − · · · + (−1)N−1

(N − 1)! .

Using a calculator we find e−1 = 0.367879. Working sequentially, we find

S1 = 1

0! = 1

S2 = S1 + a2 = 1 − 1

1! = 0

S3 = S2 + a3 = 0 + 1

2! = 1

2
= 0.5

S4 = S3 + a4 = 0.5 − 1

3! = 0.333333

S5 = S4 + a5 = 0.333333 + 1

4! = 0.375

S6 = S5 + a6 = 0.375 − 1

5! = 0.366667

S7 = S6 + a7 = 0.366667 + 1

6! = 0.368056

Note that

|S7 − e−1| = 1.76 × 10−4 < 10−3.

In Exercises 9 and 10, use a computer algebra system to compute S10, S100, S500, and S1000 for the series. Do these
values suggest convergence to the given value?

9.

π − 3

4
= 1

2 · 3 · 4
− 1

4 · 5 · 6
+ 1

6 · 7 · 8
− 1

8 · 9 · 10
+ · · ·
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solution Write

an = (−1)n+1

2n · (2n + 1) · (2n + 2)

Then

SN =
N∑

i=1

an

Computing, we find

π − 3

4
≈ 0.0353981635

S10 ≈ 0.03535167962

S100 ≈ 0.03539810274

S500 ≈ 0.03539816290

S1000 ≈ 0.03539816334

It appears that SN → π−3
4 .

10.

π4

90
= 1 + 1

24
+ 1

34
+ 1

44
+ · · ·

solution Write

SN =
N∑

i=1

1

i4

Computing, we find

π4

90
≈ 1.082323234

S(10) ≈ 1.082036583

S(100) ≈ 1.082322905

S(500) ≈ 1.082323231

S(1000) ≈ 1.082323233

It appears that SN → π4

90 .

11. Calculate S3, S4, and S5 and then find the sum of the telescoping series

S =
∞∑

n=1

(
1

n + 1
− 1

n + 2

)

solution

S3 =
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
+
(

1

4
− 1

5

)
= 1

2
− 1

5
= 3

10
;

S4 = S3 +
(

1

5
− 1

6

)
= 1

2
− 1

6
= 1

3
;

S5 = S4 +
(

1

6
− 1

7

)
= 1

2
− 1

7
= 5

14
.

The general term in the sequence of partial sums is

SN =
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
+
(

1

4
− 1

5

)
+ · · · +

(
1

N + 1
− 1

N + 2

)
= 1

2
− 1

N + 2
;
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thus,

S = lim
N→∞ SN = lim

N→∞

(
1

2
− 1

N + 2

)
= 1

2
.

The sum of the telescoping series is therefore 1
2 .

12. Write
∞∑

n=3

1

n(n − 1)
as a telescoping series and find its sum.

solution By partial fraction decomposition

1

n(n − 1)
= 1

n − 1
− 1

n
,

so

∞∑
n=3

1

n(n − 1)
=

∞∑
n=3

(
1

n − 1
− 1

n

)
.

The general term in the sequence of partial sums for this series is

SN =
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
+
(

1

4
− 1

5

)
+ · · · +

(
1

N − 1
− 1

N

)
= 1

2
− 1

N
;

thus,

S = lim
N→∞ SN = lim

N→∞

(
1

2
− 1

N

)
= 1

2
.

13. Calculate S3, S4, and S5 and then find the sum S =
∞∑

n=1

1

4n2 − 1
using the identity

1

4n2 − 1
= 1

2

(
1

2n − 1
− 1

2n + 1

)

solution

S3 = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
= 1

2

(
1 − 1

7

)
= 3

7
;

S4 = S3 + 1

2

(
1

7
− 1

9

)
= 1

2

(
1 − 1

9

)
= 4

9
;

S5 = S4 + 1

2

(
1

9
− 1

11

)
= 1

2

(
1 − 1

11

)
= 5

11
.

The general term in the sequence of partial sums is

SN = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
+ · · · + 1

2

(
1

2N − 1
− 1

2N + 1

)
= 1

2

(
1 − 1

2N + 1

)
;

thus,

S = lim
N→∞ SN = lim

N→∞
1

2

(
1 − 1

2N + 1

)
= 1

2
.

14. Use partial fractions to rewrite
∞∑

n=1

1

n(n + 3)
as a telescoping series and find its sum.

solution By partial fraction decomposition

1

n (n + 3)
= A

n
+ B

n + 3
;

clearing denominators gives

1 = A (n + 3) + Bn.

Setting n = 0 yields A = 1
3 , while setting n = −3 yields B = − 1

3 . Thus,

1

n(n + 3)
= 1

3

(
1

n
− 1

n + 3

)
,
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and

∞∑
n=1

1

n(n + 3)
=

∞∑
n=1

1

3

(
1

n
− 1

n + 3

)
.

The general term in the sequence of partial sums for the series on the right-hand side is

SN = 1

3

(
1 − 1

4

)
+ 1

3

(
1

2
− 1

5

)
+ 1

3

(
1

3
− 1

6

)
+ 1

3

(
1

4
− 1

7

)
+ 1

3

(
1

5
− 1

8

)
+ 1

3

(
1

6
− 1

9

)

+ · · · + 1

3

(
1

N − 2
− 1

N + 1

)
+ 1

3

(
1

N − 1
− 1

N + 2

)
+ 1

3

(
1

N
− 1

N + 3

)

= 1

3

(
1 + 1

2
+ 1

3

)
− 1

3

(
1

N + 1
+ 1

N + 2
+ 1

N + 3

)
= 11

18
− 1

3

(
1

N + 1
+ 1

N + 2
+ 1

N + 3

)
.

Thus,

lim
N→∞ SN = lim

N→∞

[
11

18
− 1

3

(
1

N + 1
+ 1

N + 2
+ 1

N + 3

)]
= 11

18
,

and

∞∑
n=1

1

n(n + 3)
= 11

18
.

15. Find the sum of
1

1 · 3
+ 1

3 · 5
+ 1

5 · 7
+ · · · .

solution We may write this sum as

∞∑
n=1

1

(2n − 1)(2n + 1)
=

∞∑
n=1

1

2

(
1

2n − 1
− 1

2n + 1

)
.

The general term in the sequence of partial sums is

SN = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
+ · · · + 1

2

(
1

2N − 1
− 1

2N + 1

)
= 1

2

(
1 − 1

2N + 1

)
;

thus,

lim
N→∞ SN = lim

N→∞
1

2

(
1 − 1

2N + 1

)
= 1

2
,

and

∞∑
n=1

1

(2n − 1)(2n + 1)
= 1

2
.

16. Find a formula for the partial sum SN of
∞∑

n=1

(−1)n−1 and show that the series diverges.

solution The partial sums of the series are:

S1 = (−1)1−1 = 1;
S2 = (−1)0 + (−1)1 = 1 − 1 = 0;
S3 = (−1)0 + (−1)1 + (−1)2 = 1;
S4 = (−1)0 + (−1)1 + (−1)2 + (−1)3 = 0; · · ·

In general,

SN =
{

1 if N odd
0 if N even

Because the values of SN alternate between 0 and 1, the sequence of partial sums diverges; this, in turn, implies that the

series
∞∑

n=1

(−1)n−1 diverges.
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In Exercises 17–22, use Theorem 3 to prove that the following series diverge.

17.
∞∑

n=1

n

10n + 12

solution The general term,
n

10n + 12
, has limit

lim
n→∞

n

10n + 12
= lim

n→∞
1

10 + (12/n)
= 1

10

Since the general term does not tend to zero, the series diverges.

18.
∞∑

n=1

n√
n2 + 1

solution The general term,
n√

n2 + 1
, has limit

lim
n→∞

n√
n2 + 1

= lim
n→∞

√
n2

n2 + 1
= lim

n→∞

√
1

1 + (1/n2)
= 1

Since the general term does not tend to zero, the series diverges.

19.
0

1
− 1

2
+ 2

3
− 3

4
+ · · ·

solution The general term an = (−1)n−1 n−1
n does not tend to zero. In fact, because limn→∞ n−1

n = 1, limn→∞ an

does not exist. By Theorem 3, we conclude that the given series diverges.

20.
∞∑

n=1

(−1)nn2

solution The general term an = (−1)nn2 does not tend to zero. In fact, because limn→∞ n2 = ∞, limn→∞ an does
not exist. By Theorem 3, we conclude that the given series diverges.

21. cos
1

2
+ cos

1

3
+ cos

1

4
+ · · ·

solution The general term an = cos 1
n+1 tends to 1, not zero. By Theorem 3, we conclude that the given series

diverges.

22.
∞∑

n=0

(√
4n2 + 1 − n

)
solution The general term of the series satisfies

√
4n2 + 1 − n >

√
4n2 − n = n

Thus the general term tends to infinity. The series diverges by Theorem 2.

In Exercises 23–36, use the formula for the sum of a geometric series to find the sum or state that the series diverges.

23.
1

1
+ 1

8
+ 1

82
+ · · ·

solution This is a geometric series with c = 1 and r = 1
8 , so its sum is

1

1 − 1
8

= 1

7/8
= 8

7

24.
43

53
+ 44

54
+ 45

55 + · · ·
solution This is a geometric series with

c = 43

53
and r = 4

5

so its sum is

c

1 − r
= 43/53

1 − 4
5

= 43

53 − 4 · 52
= 64

25
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25.
∞∑

n=3

(
3

11

)−n

solution Rewrite this series as

∞∑
n=3

(
11

3

)n

This is a geometric series with r = 11

3
> 1, so it is divergent.

26.
∞∑

n=2

7 · (−3)n

5n

solution This is a geometric series with c = 7 and r = −3

5
, starting at n = 2. Its sum is thus

cr2

1 − r
= 7 · (9/25)

1 − 3
5

= 63

25
· 5

8
= 63

40

27.
∞∑

n=−4

(
−4

9

)n

solution This is a geometric series with c = 1 and r = −4

9
, starting at n = −4. Its sum is thus

cr−4

1 − r
= c

r4 − r5
= 1

44

94 + 45

95

= 95

9 · 44 + 45
= 59,049

3328

28.
∞∑

n=0

(π

e

)n

solution Since π > e, this is a geometric series with r > 1, so it diverges.

29.
∞∑

n=1

e−n

solution Rewrite the series as

∞∑
n=1

(
1

e

)n

to recognize it as a geometric series with c = 1
e and r = 1

e . Thus,

∞∑
n=1

e−n =
1
e

1 − 1
e

= 1

e − 1
.

30.
∞∑

n=2

e3−2n

solution Rewrite the series as

∞∑
n=2

e3e−2n =
∞∑

n=2

e3
(

1

e2

)n

to recognize it as a geometric series with c = e3
(

1
e2

)2 = 1
e and r = 1

e2 . Thus,

∞∑
n=2

e3−2n =
1
e

1 − 1
e2

= e

e2 − 1
.

31.
∞∑

n=0

8 + 2n

5n

solution Rewrite the series as

∞∑
n=0

8

5n
+

∞∑
n=0

2n

5n
=

∞∑
n=0

8 ·
(

1

5

)n

+
∞∑

n=0

(
2

5

)n

,
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which is a sum of two geometric series. The first series has c = 8
(

1
5

)0 = 8 and r = 1
5 ; the second has c =

(
2
5

)0 = 1

and r = 2
5 . Thus,

∞∑
n=0

8 ·
(

1

5

)n

= 8

1 − 1
5

= 8
4
5

= 10,

∞∑
n=0

(
2

5

)n

= 1

1 − 2
5

= 1
3
5

= 5

3
,

and

∞∑
n=0

8 + 2n

5n
= 10 + 5

3
= 35

3
.

32.
∞∑

n=0

3(−2)n − 5n

8n

solution Rewrite the series as

∞∑
n=0

3(−2)n − 5n

8n
=

∞∑
n=0

3(−2)n

8n
−

∞∑
n=0

5n

8n

which is a difference of two geometric series. The first has c = 3 and r = − 1
4 ; the second has c = 1 and r = 5

8 . Thus

∞∑
n=0

3(−2)n

8n
= 3

1 + 1
4

= 12

5

∞∑
n=0

5n

8n
= 1

1 − 5
8

= 8

3

so that

∞∑
n=0

3(−2)n − 5n

8n
= 12

5
− 8

3
= − 4

15

33. 5 − 5

4
+ 5

42
− 5

43
+ · · ·

solution This is a geometric series with c = 5 and r = − 1
4 . Thus,

∞∑
n=0

5 ·
(

−1

4

)n

= 5

1 −
(
− 1

4

) = 5

1 + 1
4

= 5
5
4

= 4.

34.
23

7
+ 24

72
+ 25

73
+ 26

74
+ · · ·

solution This is a geometric series with c = 8
7 and r = 2

7 . Thus,

∞∑
n=0

8

7
·
(

2

7

)n

=
8
7

1 − 2
7

=
8
7
5
7

= 8

5
.

35.
7

8
− 49

64
+ 343

512
− 2401

4096
+ · · ·

solution This is a geometric series with c = 7
8 and r = − 7

8 . Thus,

∞∑
n=0

7

8
·
(

−7

8

)n

=
7
8

1 −
(
− 7

8

) =
7
8
15
8

= 7

15
.
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36.
25

9
+ 5

3
+ 1 + 3

5
+ 9

25
+ 27

125
+ · · ·

solution This appears to be a geometric series with

c = 25

9
and r = 3

5

so its sum is

c

1 − r
= 25/9

1 − 3
5

= 25

9
· 5

2
= 125

18

37. Which of the following are not geometric series?

(a)
∞∑

n=0

7n

29n
(b)

∞∑
n=3

1

n4

(c)
∞∑

n=0

n2

2n
(d)

∞∑
n=5

π−n

solution

(a)
∞∑

n=0

7n

29n =
∞∑

n=0

(
7

29

)n

: this is a geometric series with common ratio r = 7

29
.

(b) The ratio between two successive terms is

an+1

an
=

1
(n+1)4

1
n4

= n4

(n + 1)4
=
(

n

n + 1

)4
.

This ratio is not constant since it depends on n. Hence, the series
∞∑

n=3

1

n4
is not a geometric series.

(c) The ratio between two successive terms is

an+1

an
=

(n+1)2

2n+1

n2

2n

= (n + 1)2

n2
· 2n

2n+1
=
(

1 + 1

n

)2
· 1

2
.

This ratio is not constant since it depends on n. Hence, the series
∞∑

n=0

n2

2n
is not a geometric series.

(d)
∞∑

n=5

π−n =
∞∑

n=5

(
1

π

)n

: this is a geometric series with common ratio r = 1

π
.

38. Use the method of Example 8 to show that
∞∑

k=1

1

k1/3
diverges.

solution Each term in the N th partial sum is greater than or equal to
1

N
1
3

, hence:

SN = 1

11/3
+ 1

21/3
+ 3

31/3
+ · · · + 1

N1/3
≥ 1

N1/3
+ 1

N1/3
+ 1

N1/3
+ · · · + 1

N1/3
= N · 1

N1/3
= N2/3.

Since lim
N→∞N2/3 = ∞, it follows that

lim
N→∞ SN = ∞.

Thus, the series
∞∑

k=1

1

k1/3
diverges.

39. Prove that if
∞∑

n=1

an converges and
∞∑

n=1

bn diverges, then
∞∑

n=1

(an + bn) diverges. Hint: If not, derive a contradiction

by writing

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an
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solution Suppose to the contrary that
∑∞

n=1 an converges,
∑∞

n=1 bn diverges, but
∑∞

n=1(an + bn) converges. Then
by the Linearity of Infinite Series, we have

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an

so that
∑∞

n=1 bn converges, a contradiction.

40. Prove the divergence of
∞∑

n=0

9n + 2n

5n
.

solution Note that this is the sum of two infinite series:

∞∑
n=0

9n + 2n

5n
=

∞∑
n=0

9n

5n
+

∞∑
n=0

2n

5n

The first of these is a geometric series with r = 9
5 > 1, so diverges, while the second is a geometric series with r = 2

5 < 1,
so converges. By the previous exercise, the sum of the two also diverges.

41. Give a counterexample to show that each of the following statements is false.

(a) If the general term an tends to zero, then
∞∑

n=1

an = 0.

(b) The N th partial sum of the infinite series defined by {an} is aN .

(c) If an tends to zero, then
∞∑

n=1

an converges.

(d) If an tends to L, then
∞∑

n=1

an = L.

solution

(a) Let an = 2−n. Then limn→∞ an = 0, but an is a geometric series with c = 20 = 1 and r = 1/2, so its sum is
1

1 − (1/2)
= 2.

(b) Let an = 1. Then the nth partial sum is a1 + a2 + · · · + an = n while an = 1.

(c) Let an = 1√
n

. An example in the text shows that while an tends to zero, the sum
∑∞

n=1
an does not converge.

(d) Let an = 1. Then clearly an tends to L = 1, while the series
∑∞

n=1 an obviously diverges.

42. Suppose that S =
∞∑

n=1

an is an infinite series with partial sum SN = 5 − 2

N2
.

(a) What are the values of
10∑

n=1

an and
16∑

n=5

an?

(b) What is the value of a3?

(c) Find a general formula for an.

(d) Find the sum
∞∑

n=1

an.

solution

(a)

10∑
n=1

an = S10 = 5 − 2

102
= 249

50
;

16∑
n=5

an = (a1 + · · · + a16) − (a1 + a2 + a3 + a4) = S16 − S4 =
(

5 − 2

162

)
−
(

5 − 2

42

)
= 2

16
− 2

256
= 15

128
.

(b)

a3 = (a1 + a2 + a3) − (a1 + a2) = S3 − S2 =
(

5 − 2

32

)
−
(

5 − 2

22

)
= 1

2
− 2

9
= 5

18
.
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(c) Since an = Sn − Sn−1, we have:

an = Sn − Sn−1 =
(

5 − 2

n2

)
−
(

5 − 2

(n − 1)2

)
= 2

(n − 1)2
− 2

n2

=
2
(
n2 − (n − 1)2

)
(n (n − 1))2

=
2
(
n2 − n2 + 2n − 1

)
(n (n − 1))2

= 2 (2n − 1)

n2(n − 1)2
.

(d) The sum
∞∑

n=1

an is the limit of the sequence of partial sums {SN }. Hence:

∞∑
n=1

an = lim
N→∞ SN = lim

N→∞

(
5 − 2

N2

)
= 5.

43. Compute the total area of the (infinitely many) triangles in Figure 4.

1
8

1
4

1
2

1
16

1
2

y

x
1

FIGURE 4

solution The area of a triangle with base B and height H is A = 1
2BH . Because all of the triangles in Figure 4 have

height 1
2 , the area of each triangle equals one-quarter of the base. Now, for n ≥ 0, the nth triangle has a base which

extends from x = 1
2n+1 to x = 1

2n . Thus,

B = 1

2n
− 1

2n+1
= 1

2n+1
and A = 1

4
B = 1

2n+3
.

The total area of the triangles is then given by the geometric series

∞∑
n=0

1

2n+3
=

∞∑
n=0

1

8

(
1

2

)n

=
1
8

1 − 1
2

= 1

4
.

44. The winner of a lottery receives m dollars at the end of each year for N years. The present value (PV) of this prize

in today’s dollars is PV =
N∑

i=1

m(1 + r)−i , where r is the interest rate. Calculate PV if m = $50,000, r = 0.06, and

N = 20. What is PV if N = ∞?

solution For the given values r , m and N , we have

PV =
20∑
i=1

50,000(1 + 0.06)−i =
20∑
i=1

50,000

(
50

53

)i

= 50,000
1 −

(
50
53

)21

1 − 50
53

= $623,496.06.

If we extend the payments forever, then N = ∞ and

PV =
∞∑
i=1

50,000(1 + 0.06)−i =
∞∑
i=1

50,000

(
50

53

)i

=
50,000

(
50
53

)
1 − 50

53

= $833,333.33.

45. Find the total length of the infinite zigzag path in Figure 5 (each zag occurs at an angle of π
4 ).

1

π /4 π /4

FIGURE 5
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solution Because the angle at the lower left in Figure 5 has measure π
4 and each zag in the path occurs at an angle of

π
4 , every triangle in the figure is an isosceles right triangle. Accordingly, the length of each new segment in the path is
1√
2

times the length of the previous segment. Since the first segment has length 1, the total length of the path is

∞∑
n=0

(
1√
2

)n

= 1

1 − 1√
2

=
√

2√
2 − 1

= 2 + √
2.

46. Evaluate
∞∑

n=1

1

n(n + 1)(n + 2)
. Hint: Find constants A, B, and C such that

1

n(n + 1)(n + 2)
= A

n
+ B

n + 1
+ C

n + 2

solution By partial fraction decomposition

1

n(n + 1)(n + 2)
= A

n
+ B

n + 1
+ C

n + 2
;

clearing denominators then gives

1 = A (n + 1) (n + 2) + Bn (n + 2) + Cn (n + 1) .

Setting n = 0 now yields A = 1
2 , while setting n = −1 yields B = −1 and setting n = −2 yields C = 1

2 . Thus,

1

n (n + 1) (n + 2)
=

1
2
n

− 1

n + 1
+

1
2

n + 2
= 1

2

(
1

n
− 2

n + 1
+ 1

n + 2

)
,

and

∞∑
n=1

1

n(n + 1)(n + 2)
=

∞∑
n=1

1

2

(
1

n
− 2

n + 1
+ 1

n + 2

)
.

The general term of the sequence of partial sums for the series on the right-hand side is

SN = 1

2

(
1 − 2

2
+ 1

3

)
+ 1

2

(
1

2
− 2

3
+ 1

4

)
+ 1

2

(
1

3
− 2

4
+ 1

5

)
+ 1

2

(
1

4
+ 2

5
+ 1

6

)
+ 1

2

(
1

5
− 2

6
+ 1

7

)

+ · · · + 1

2

(
1

N − 2
− 2

N − 1
+ 1

N

)
+ 1

2

(
1

N − 1
− 2

N
+ 1

N + 1

)
+ 1

2

(
1

N
− 2

N + 1
+ 1

N + 2

)

= 1

2

(
1

2
− 1

N + 1
+ 1

N + 2

)
.

Thus,

∞∑
n=1

1

n(n + 1)(n + 2)
= lim

N→∞ SN = lim
N→∞

1

2

(
1

2
− 1

N + 1
+ 1

N + 2

)
= 1

4
.

47. Show that if a is a positive integer, then

∞∑
n=1

1

n(n + a)
= 1

a

(
1 + 1

2
+ · · · + 1

a

)

solution By partial fraction decomposition

1

n (n + a)
= A

n
+ B

n + a
;

clearing the denominators gives

1 = A(n + a) + Bn.

Setting n = 0 then yields A = 1
a , while setting n = −a yields B = − 1

a . Thus,

1

n (n + a)
=

1
a

n
−

1
a

n + a
= 1

a

(
1

n
− 1

n + a

)
,
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and

∞∑
n=1

1

n(n + a)
=

∞∑
n=1

1

a

(
1

n
− 1

n + a

)
.

For N > a, the N th partial sum is

SN = 1

a

(
1 + 1

2
+ 1

3
+ · · · + 1

a

)
− 1

a

(
1

N + 1
+ 1

N + 2
+ 1

N + 3
+ · · · + 1

N + a

)
.

Thus,

∞∑
n=1

1

n(n + a)
= lim

N→∞ SN = 1

a

(
1 + 1

2
+ 1

3
+ · · · + 1

a

)
.

48. A ball dropped from a height of 10 ft begins to bounce. Each time it strikes the ground, it returns to two-thirds of its
previous height. What is the total distance traveled by the ball if it bounces infinitely many times?

solution The distance traveled by the ball is shown in the accompanying figure:

2
3

h

h = 10

(  )

2
3

h

2
3

2
h (  )2

3

2
h

The total distance d traveled by the ball is given by the following infinite sum:

d = h + 2 · 2

3
h + 2 ·

(
2

3

)2
h + 2 ·

(
2

3

)3
h + · · · = h + 2h

(
2

3
+
(

2

3

)2
+
(

2

3

)3
+ · · ·

)
= h + 2h

∞∑
n=1

(
2

3

)n

.

We use the formula for the sum of a geometric series to compute the sum of the resulting series:

d = h + 2h ·
(

2
3

)1

1 − 2
3

= h + 2h(2) = 5h.

With h = 10 feet, it follows that the total distance traveled by the ball is 50 feet.

49. Let {bn} be a sequence and let an = bn − bn−1. Show that
∞∑

n=1

an converges if and only if lim
n→∞ bn exists.

solution Let an = bn − bn−1. The general term in the sequence of partial sums for the series
∞∑

n=1

an is then

SN = (b1 − b0) + (b2 − b1) + (b3 − b2) + · · · + (bN − bN−1) = bN − b0.

Now, if lim
N→∞ bN exists, then so does lim

N→∞ SN and
∞∑

n=1

an converges. On the other hand, if
∞∑

n=1

an converges, then

lim
N→∞ SN exists, which implies that lim

N→∞ bN also exists. Thus,
∞∑

n=1

an converges if and only if lim
n→∞ bn exists.

50. Assumptions Matter Show, by giving counterexamples, that the assertions of Theorem 1 are not valid if the series
∞∑

n=0

an and
∞∑

n=0

bn are not convergent.

solution Let an = 2−n − 2n and bn = 2n. Then, both

∞∑
n=0

an and
∞∑

n=0

bn
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diverge, so the sum

∞∑
n=0

an +
∞∑

n=0

bn

is not defined. However,

∞∑
n=0

(an + bn) =
∞∑

n=0

((2−n − 2n) + 2n) =
∞∑

n=0

2−n = 1.

Further Insights and Challenges
Exercises 51–53 use the formula

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r
7

51. Professor GeorgeAndrews of Pennsylvania State University observed that we can use Eq. (7) to calculate the derivative
of f (x) = xN (for N ≥ 0). Assume that a 	= 0 and let x = ra. Show that

f ′(a) = lim
x→a

xN − aN

x − a
= aN−1 lim

r→1

rN − 1

r − 1

and evaluate the limit.

solution According to the definition of derivative of f (x) at x = a

f ′ (a) = lim
x→a

xN − aN

x − a
.

Now, let x = ra. Then x → a if and only if r → 1, and

f ′ (a) = lim
x→a

xN − aN

x − a
= lim

r→1

(ra)N − aN

ra − a
= lim

r→1

aN
(
rN − 1

)
a (r − 1)

= aN−1 lim
r→1

rN − 1

r − 1
.

By Eq. (7) for a geometric sum,

1 − rN

1 − r
= rN − 1

r − 1
= 1 + r + r2 + · · · + rN−1,

so

lim
r→1

rN − 1

r − 1
= lim

r→1

(
1 + r + r2 + · · · + rN−1

)
= 1 + 1 + 12 + · · · + 1N−1 = N.

Therefore, f ′ (a) = aN−1 · N = NaN−1

52. Pierre de Fermat used geometric series to compute the area under the graph of f (x) = xN over [0, A]. For 0 < r < 1,
let F(r) be the sum of the areas of the infinitely many right-endpoint rectangles with endpoints Arn, as in Figure 6. As r

tends to 1, the rectangles become narrower and F(r) tends to the area under the graph.

(a) Show that F(r) = AN+1 1 − r

1 − rN+1
.

(b) Use Eq. (7) to evaluate
∫ A

0
xN dx = lim

r→1
F(r).

y

f (x) = xN

r3A r2A rA A
x

FIGURE 6

solution

(a) The area of the rectangle whose base extends from x = rnA to x = rn−1A is

(rn−1A)N(rn−1A − rnA).
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Hence, F(r) is the sum

F(r) =
∞∑

n=1

(
rn−1A

)N (
rn−1A − rnA

)
=

∞∑
n=1

r(n−1)N rn−1(1 − r)AN+1 = AN+1(1 − r)

∞∑
n=1

rnN−N+n−1

= AN+1(1 − r)

rN+1

∞∑
n=1

(
rN+1

)n = AN+1(1 − r)

rN+1
· rN+1

1 − rN+1
= AN+1 1 − r

1 − rN+1
.

(b) Using the result from part (a) and Eq. (7) from Exercise 51,∫ A

0
xN dx = lim

r→1
F(r) = AN+1 lim

r→1

1 − r

1 − rN+1
= AN+1 lim

r→1

1

1 + r + r2 + · · · + rN
= AN+1 · 1

N + 1
= AN+1

N + 1
.

53. Verify the Gregory–Leibniz formula as follows.

(a) Set r = −x2 in Eq. (7) and rearrange to show that

1

1 + x2
= 1 − x2 + x4 − · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

(b) Show, by integrating over [0, 1], that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · + (−1)N−1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2

(c) Use the Comparison Theorem for integrals to prove that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Hint: Observe that the integrand is ≤ x2N .

(d) Prove that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

Hint: Use (b) and (c) to show that the partial sums SN of satisfy
∣∣SN − π

4

∣∣ ≤ 1
2N+1 , and thereby conclude that

lim
N→∞ SN = π

4 .

solution

(a) Start with Eq. (7), and substitute −x2 for r:

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r

1 − x2 + x4 + · · · + (−1)N−1x2N−2 = 1 − (−1)Nx2N

1 − (−x2)

1 − x2 + x4 + · · · + (−1)N−1x2N−2 = 1

1 + x2
− (−1)Nx2N

1 + x2

1

1 + x2
= 1 − x2 + x4 + · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

(b) The integrals of both sides must be equal. Now,∫ 1

0

1

1 + x2
dx = tan−1 x

∣∣∣∣1
0

= tan−1 1 − tan−1 0 = π

4

while ∫ 1

0

(
1 − x2 + x4 + · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

)
dx

=
(

x − 1

3
x3 + 1

5
x5 + · · · + (−1)N−1 1

2N − 1
x2N−1

)
+ (−1)N

∫ 1

0

x2N dx

1 + x2

= 1 − 1

3
+ 1

5
+ · · · + (−1)N−1 1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2
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(c) Note that for x ∈ [0, 1], we have 1 + x2 ≥ 1, so that

0 ≤ x2N

1 + x2
≤ x2N

By the Comparison Theorem for integrals, we then see that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤
∫ 1

0
x2N dx = 1

2N + 1
x2N+1

∣∣∣∣1
0

= 1

2N + 1

(d) Write

an = (−1)n
1

2n − 1
, n ≥ 1

and let SN be the partial sums. Then

∣∣∣SN − π

4

∣∣∣ =
∣∣∣∣∣(−1)N

∫ 1

0

x2N dx

1 + x2

∣∣∣∣∣ =
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Thus limN→∞ SN = π

4
so that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− . . .

54. Cantor’s Disappearing Table (following Larry Knop of Hamilton College) Take a table of length L (Figure 7).
At stage 1, remove the section of length L/4 centered at the midpoint. Two sections remain, each with length less than
L/2. At stage 2, remove sections of length L/42 from each of these two sections (this stage removes L/8 of the table).
Now four sections remain, each of length less than L/4. At stage 3, remove the four central sections of length L/43, etc.

(a) Show that at the N th stage, each remaining section has length less than L/2N and that the total amount of table
removed is

L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)
(b) Show that in the limit as N → ∞, precisely one-half of the table remains.

This result is curious, because there are no nonzero intervals of table left (at each stage, the remaining sections have a
length less than L/2N ). So the table has “disappeared.” However, we can place any object longer than L/4 on the table.
It will not fall through because it will not fit through any of the removed sections.

L/16 L/16L/4

FIGURE 7

solution
(a) After the N th stage, the total amount of table that has been removed is

L

4
+ 2L

42
+ 4L

43
+ · · · + 2N−1L

4N
= L

(
1

4
+ 1

8
+ 1

16
+ · · · + 2N−1

22N

)
= L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)

At the first stage (N = 1), there are two remaining sections each of length

L − L
4

2
= 3L

8
<

L

2
.

Suppose that at the Kth stage, each of the 2K remaining sections has length less than
L

2K
. The (K + 1)st stage is obtained

by removing the section of length
L

4K+1
centered at the midpoint of each segment in the Kth stage. Let ak and aK+1,

respectively, denote the length of each segment in the Kth and (K + 1)st stage. Then,

aK+1 = aK − L
4K+1

2
<

L
2K − L

4K+1

2
= L

2K

(
1 − 1

2K+2

2

)
<

L

2K
· 1

2
= L

2K+1
.
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Thus, by mathematical induction, each remaining section at the N th stage has length less than
L

2N
.

(b) From part (a), we know that after N stages, the amount of the table that has been removed is

L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)
=

N∑
n=1

1

2n+1
.

As N → ∞, the amount of the table that has been removed becomes a geometric series whose sum is

L

∞∑
n=1

1

2

(
1

2

)n

= L

1
4

1 − 1
2

= 1

2
L.

Thus, the amount of table that remains is L − 1
2L = 1

2L.

55. The Koch snowflake (described in 1904 by Swedish mathematician Helge von Koch) is an infinitely jagged “fractal”
curve obtained as a limit of polygonal curves (it is continuous but has no tangent line at any point). Begin with an
equilateral triangle (stage 0) and produce stage 1 by replacing each edge with four edges of one-third the length, arranged
as in Figure 8. Continue the process: At the nth stage, replace each edge with four edges of one-third the length.
(a) Show that the perimeter Pn of the polygon at the nth stage satisfies Pn = 4

3Pn−1. Prove that lim
n→∞ Pn = ∞. The

snowflake has infinite length.
(b) Let A0 be the area of the original equilateral triangle. Show that (3)4n−1 new triangles are added at the nth stage,
each with area A0/9n (for n ≥ 1). Show that the total area of the Koch snowflake is 8

5A0.

Stage 1 Stage 3Stage 2

FIGURE 8

solution
(a) Each edge of the polygon at the (n − 1)st stage is replaced by four edges of one-third the length; hence the perimeter
of the polygon at the nth stage is 4

3 times the perimeter of the polygon at the (n − 1)th stage. That is, Pn = 4
3Pn−1. Thus,

P1 = 4

3
P0; P2 = 4

3
P1 =

(
4

3

)2
P0, P3 = 4

3
P2 =

(
4

3

)3
P0,

and, in general, Pn = ( 4
3

)n
P0. As n → ∞, it follows that

lim
n→∞ Pn = P0 lim

n→∞

(
4

3

)n

= ∞.

(b) When each edge is replaced by four edges of one-third the length, one new triangle is created. At the (n − 1)st stage,
there are 3 · 4n−1 edges in the snowflake, so 3 · 4n−1 new triangles are generated at the nth stage. Because the area of an
equilateral triangle is proportional to the square of its side length and the side length for each new triangle is one-third
the side length of triangles from the previous stage, it follows that the area of the triangles added at each stage is reduced
by a factor of 1

9 from the area of the triangles added at the previous stage. Thus, each triangle added at the nth stage has
an area of A0/9n. This means that the nth stage contributes

3 · 4n−1 · A0

9n
= 3

4
A0

(
4

9

)n

to the area of the snowflake. The total area is therefore

A = A0 + 3

4
A0

∞∑
n=1

(
4

9

)n

= A0 + 3

4
A0

4
9

1 − 4
9

= A0 + 3

4
A0 · 4

5
= 8

5
A0.

10.3 Convergence of Series with Positive Terms

Preliminary Questions

1. Let S =
∞∑

n=1

an. If the partial sums SN are increasing, then (choose the correct conclusion):

(a) {an} is an increasing sequence.
(b) {an} is a positive sequence.
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solution The correct response is (b). Recall that SN = a1 + a2 + a3 + · · · + aN ; thus, SN − SN−1 = aN . If SN is
increasing, then SN − SN−1 ≥ 0. It then follows that aN ≥ 0; that is, {an} is a positive sequence.

2. What are the hypotheses of the Integral Test?

solution The hypotheses for the Integral Test are: A function f (x) such that an = f (n) must be positive, decreasing,
and continuous for x ≥ 1.

3. Which test would you use to determine whether
∞∑

n=1

n−3.2 converges?

solution Because n−3.2 = 1
n3.2 , we see that the indicated series is a p-series with p = 3.2 > 1. Therefore, the series

converges.

4. Which test would you use to determine whether
∞∑

n=1

1

2n + √
n

converges?

solution Because

1

2n + √
n

<
1

2n
=
(

1

2

)n

,

and
∞∑

n=1

(
1

2

)n

is a convergent geometric series, the comparison test would be an appropriate choice to establish that the given series
converges.

5. Ralph hopes to investigate the convergence of
∞∑

n=1

e−n

n
by comparing it with

∞∑
n=1

1

n
. Is Ralph on the right track?

solution No, Ralph is not on the right track. For n ≥ 1,

e−n

n
<

1

n
;

however,
∞∑

n=1

1

n
is a divergent series. The Comparison Test therefore does not allow us to draw a conclusion about the

convergence or divergence of the series
∞∑

n=1

e−n

n
.

Exercises
In Exercises 1–14, use the Integral Test to determine whether the infinite series is convergent.

1.
∞∑

n=1

1

n4

solution Let f (x) = 1

x4
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the Integral

Test applies. Moreover, ∫ ∞
1

dx

x4
= lim

R→∞

∫ R

1
x−4 dx = −1

3
lim

R→∞

(
1

R3
− 1

)
= 1

3
.

The integral converges; hence, the series
∞∑

n=1

1

n4
also converges.

2.
∞∑

n=1

1

n + 3

solution Let f (x) = 1

x + 3
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the Integral

Test applies. Moreover, ∫ ∞
1

dx

x + 3
= lim

R→∞

∫ R

1

dx

x + 3
= lim

R→∞ (ln(R + 3) − ln 4) = ∞.

The integral diverges; hence, the series
∞∑

n=1

1

n + 3
also diverges.
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3.
∞∑

n=1

n−1/3

solution Let f (x) = x− 1
3 = 1

3√x
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the

Integral Test applies. Moreover,

∫ ∞
1

x−1/3 dx = lim
R→∞

∫ R

1
x−1/3 dx = 3

2
lim

R→∞
(
R2/3 − 1

)
= ∞.

The integral diverges; hence, the series
∞∑

n=1

n−1/3 also diverges.

4.
∞∑

n=5

1√
n − 4

solution Let f (x) = 1√
x − 4

. This function is continuous, positive and decreasing on the interval x ≥ 5, so the

Integral Test applies. Moreover,

∫ ∞
5

dx√
x − 4

= lim
R→∞

∫ R

5

dx√
x − 4

= 2 lim
R→∞

(√
R − 4 − 1

)
= ∞.

The integral diverges; hence, the series
∞∑

n=5

1√
n − 4

also diverges.

5.
∞∑

n=25

n2

(n3 + 9)5/2

solution Let f (x) = x2(
x3 + 9

)5/2
. This function is positive and continuous for x ≥ 25. Moreover, because

f ′(x) = 2x(x3 + 9)
5/2 − x2 · 5

2 (x3 + 9)
3/2 · 3x2

(x3 + 9)
5 = x(36 − 11x3)

2(x3 + 9)
7/2

,

we see that f ′(x) < 0 for x ≥ 25, so f is decreasing on the interval x ≥ 25. The Integral Test therefore applies. To
evaluate the improper integral, we use the substitution u = x3 + 9, du = 3x2dx. We then find

∫ ∞
25

x2

(x3 + 9)5/2
dx = lim

R→∞

∫ R

25

x2

(x3 + 9)5/2
dx = 1

3
lim

R→∞

∫ R3+9

15634

du

u5/2

= −2

9
lim

R→∞

(
1

(R3 + 9)3/2
− 1

156343/2

)
= 2

9 · 156343/2
.

The integral converges; hence, the series
∞∑

n=25

n2(
n3 + 9

)5/2
also converges.

6.
∞∑

n=1

n

(n2 + 1)3/5

solution Let f (x) = x

(x2 + 1)3/5
. Because

f ′(x) = (x2 + 1)3/5 − x · 6
5x(x2 + 1)−2/5

(x2 + 1)6/5
= 1 − 1

5x2

(x2 + 1)8/5
,

we see that f ′(x) < 0 for x >
√

5 ≈ 2.236. We conclude that f is decreasing on the interval x ≥ 3. Since f is also
positive and continuous on this interval, the Integral Test can be applied. To evaluate the improper integral, we make the
substitution u = x2 + 1, du = 2x dx. This gives

∫ ∞
3

x

(x2 + 1)3/5
dx = lim

R→∞

∫ R

3

x

(x2 + 1)3/5
dx = 1

2
lim

R→∞

∫ R2+1

10

du

u3/5
= 5

4
lim

R→∞
(
(R2 + 1)2/5 − 102/5

)
= ∞.
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The integral diverges; therefore, the series
∞∑

n=3

n

(n2 + 1)3/5
also diverges. Since the divergence of the series is not affected

by adding the finite sum
2∑

n=1

n

(n2 + 1)3/5
, the series

∞∑
n=1

n

(n2 + 1)3/5
also diverges.

7.
∞∑

n=1

1

n2 + 1

solution Let f (x) = 1

x2 + 1
. This function is positive, decreasing and continuous on the interval x ≥ 1, hence the

Integral Test applies. Moreover,∫ ∞
1

dx

x2 + 1
= lim

R→∞

∫ R

1

dx

x2 + 1
= lim

R→∞
(

tan−1 R − π

4

)
= π

2
− π

4
= π

4
.

The integral converges; hence, the series
∞∑

n=1

1

n2 + 1
also converges.

8.
∞∑

n=4

1

n2 − 1

solution Let f (x) = 1

x2 − 1
.This function is continuous, positive and decreasing on the interval x ≥ 4; therefore,

the Integral Test applies. We compute the improper integral using partial fractions:

∞∫
4

dx

x2 − 1
= lim

R→∞

R∫
4

(
1
2

x − 1
−

1
2

x + 1

)
dx = 1

2
lim

R→∞ ln
x − 1

x + 1

∣∣∣∣R
4

= 1

2
lim

R→∞

(
ln

R − 1

R + 1
− ln

3

5

)

= 1

2

(
ln 1 − ln

3

5

)
= −1

2
ln

3

5
.

The integral converges; hence, the series
∞∑

n=4

1

n2 − 1
also converges.

9.
∞∑

n=1

1

n(n + 1)

solution Let f (x) = 1

x(x + 1)
. This function is positive, continuous and decreasing on the interval x ≥ 1, so the

Integral Test applies. We compute the improper integral using partial fractions:∫ ∞
1

dx

x(x + 1)
= lim

R→∞

∫ R

1

(
1

x
− 1

x + 1

)
dx = lim

R→∞ ln
x

x + 1

∣∣∣∣R
1

= lim
R→∞

(
ln

R

R + 1
− ln

1

2

)
= ln 1 − ln

1

2
= ln 2.

The integral converges; hence, the series
∞∑

n=1

1

n(n + 1)
converges.

10.
∞∑

n=1

ne−n2

solution Let f (x) = xe−x2
. This function is continuous and positive on the interval x ≥ 1. Moreover, because

f ′(x) = 1 · e−x2 + x · e−x2 · (−2x) = e−x2
(

1 − 2x2
)

,

we see that f ′(x) < 0 for x ≥ 1, so f is decreasing on this interval. To compute the improper integral we make the
substitution u = x2, du = 2x dx. Then, we find

∫ ∞
1

xe−x2
dx = lim

R→∞

∫ R

1
xe−x2

dx = 1

2

∫ R2

1
e−u du = −1

2
lim

R→∞
(
e−R2 − e−1

)
= 1

2e
.

The integral converges; hence, the series
∞∑

n=1

ne−n2
also converges.
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11.
∞∑

n=2

1

n(ln n)2

solution Let f (x) = 1

x(ln x)2
. This function is positive and continuous for x ≥ 2. Moreover,

f ′(x) = − 1

x2(ln x)4

(
1 · (ln x)2 + x · 2 (ln x) · 1

x

)
= − 1

x2(ln x)4

(
(ln x)2 + 2 ln x

)
.

Since ln x > 0 for x > 1, f ′(x) is negative for x > 1; hence, f is decreasing for x ≥ 2. To compute the improper integral,

we make the substitution u = ln x, du = 1

x
dx. We obtain:

∫ ∞
2

1

x(ln x)2
dx = lim

R→∞

∫ R

2

1

x(ln x)2
dx = lim

R→∞

∫ ln R

ln 2

du

u2

= − lim
R→∞

(
1

ln R
− 1

ln 2

)
= 1

ln 2
.

The integral converges; hence, the series
∞∑

n=2

1

n(ln n)2
also converges.

12.
∞∑

n=1

ln n

n2

solution Let f (x) = ln x

x2
. Because

f ′(x) =
1
x · x2 − 2x ln x

x4
= x (1 − 2 ln x)

x4
= 1 − 2 ln x

x3
,

we see that f ′(x) < 0 for x >
√

e ≈ 1.65. We conclude that f is decreasing on the interval x ≥ 2. Since f is also positive
and continuous on this interval, the Integral Test can be applied. By Integration by Parts, we find∫

ln x

x2
dx = − ln x

x
+
∫

x−2 dx = − ln x

x
− 1

x
+ C;

therefore, ∫ ∞
2

ln x

x2
dx = lim

R→∞

∫ R

2

ln x

x2
dx = lim

R→∞

(
1

2
+ ln 2

2
− 1

R
− ln R

R

)
= 1 + ln 2

2
− lim

R→∞
ln R

R
.

We compute the resulting limit using L’Hôpital’s Rule:

lim
R→∞

ln R

R
= lim

R→∞
1/R

1
= 0.

Hence, ∫ ∞
2

ln x

x2
dx = 1 + ln 2

2
.

The integral converges; therefore, the series
∞∑

n=2

ln n

n2
also converges. Since the convergence of the series is not affected

by adding the finite sum
1∑

n=1

ln n

n2
, the series

∞∑
n=1

ln n

n2
also converges.

13.
∞∑

n=1

1

2ln n

solution Note that

2ln n = (eln 2)ln n = (eln n)ln 2 = nln 2.

Thus,

∞∑
n=1

1

2ln n
=

∞∑
n=1

1

nln 2
.
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Now, let f (x) = 1

xln 2
. This function is positive, continuous and decreasing on the interval x ≥ 1; therefore, the Integral

Test applies. Moreover, ∫ ∞
1

dx

xln 2
= lim

R→∞

∫ R

1

dx

xln 2
= 1

1 − ln 2
lim

R→∞(R1−ln 2 − 1) = ∞,

because 1 − ln 2 > 0. The integral diverges; hence, the series
∞∑

n=1

1

2ln n
also diverges.

14.
∞∑

n=1

1

3ln n

solution Note that

3ln n = (eln 3)ln n = (eln n)ln 3 = nln 3.

Thus,

∞∑
n=1

1

3ln n
=

∞∑
n=1

1

nln 3
.

Now, let f (x) = 1

xln 3
. This function is positive, continuous and decreasing on the interval x ≥ 1; therefore, the Integral

Test applies. Moreover,∫ ∞
1

dx

xln 3
= lim

R→∞

∫ R

1

dx

xln 3
= 1

1 − ln 3
lim

R→∞(R1−ln 3 − 1) = − 1

1 − ln 3
,

because 1 − ln 3 < 0. The integral converges; hence, the series
∞∑

n=1

1

3ln n
also converges.

15. Show that
∞∑

n=1

1

n3 + 8n
converges by using the Comparison Test with

∞∑
n=1

n−3.

solution We compare the series with the p-series
∞∑

n=1

n−3. For n ≥ 1,

1

n3 + 8n
≤ 1

n3
.

Since
∞∑

n=1

1

n3
converges (it is a p-series with p = 3 > 1), the series

∞∑
n=1

1

n3 + 8n
also converges by the Comparison Test.

16. Show that
∞∑

n=2

1√
n2 − 3

diverges by comparing with
∞∑

n=2

n−1.

solution For n ≥ 2,

1√
n2 − 3

≥ 1√
n2

= 1

n
.

The harmonic series
∞∑

n=1

1

n
diverges, and it still diverges if we drop the first term. Thus, the series

∞∑
n=2

1

n
also diverges.

The Comparison Test now lets us conclude that the larger series
∞∑

n=2

1√
n2 − 3

also diverges.

17. Let S =
∞∑

n=1

1

n + √
n

. Verify that for n ≥ 1,

1

n + √
n

≤ 1

n
,

1

n + √
n

≤ 1√
n

Can either inequality be used to show that S diverges? Show that
1

n + √
n

≥ 1

2n
and conclude that S diverges.
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solution For n ≥ 1, n + √
n ≥ n and n + √

n ≥ √
n. Taking the reciprocal of each of these inequalities yields

1

n + √
n

≤ 1

n
and

1

n + √
n

≤ 1√
n

.

These inequalities indicate that the series
∞∑

n=1

1

n + √
n

is smaller than both
∞∑

n=1

1

n
and

∞∑
n=1

1√
n

; however,
∞∑

n=1

1

n
and

∞∑
n=1

1√
n

both diverge so neither inequality allows us to show that S diverges.

On the other hand, for n ≥ 1, n ≥ √
n, so 2n ≥ n + √

n and

1

n + √
n

≥ 1

2n
.

The series
∞∑

n=1

1

2n
= 2

∞∑
n=1

1

n
diverges, since the harmonic series diverges. The Comparison Test then lets us conclude

that the larger series
∞∑

n=1

1

n + √
n

also diverges.

18. Which of the following inequalities can be used to study the convergence of
∞∑

n=2

1

n2 + √
n

? Explain.

1

n2 + √
n

≤ 1√
n

,
1

n2 + √
n

≤ 1

n2

solution The series
∞∑

n=1

1√
n

is a divergent p-series, hence the series
∞∑

n=2

1√
n

also diverges. The first inequality given

above therefore establishes that
∞∑

n=2

1

n2 + √
n

is smaller than a divergent series, which does not allow us to conclude

whether
∞∑

n=2

1

n2 + √
n

converges or diverges.

However, the second inequality given above establishes that
∞∑

n=2

1

n2 + √
n

is smaller than the convergent p-series

∞∑
n=2

1

n2
. By the Comparison Test, we therefore conclude that

∞∑
n=2

1

n2 + √
n

also converges.

In Exercises 19–30, use the Comparison Test to determine whether the infinite series is convergent.

19.
∞∑

n=1

1

n2n

solution We compare with the geometric series
∞∑

n=1

(
1

2

)n

. For n ≥ 1,

1

n2n
≤ 1

2n
=
(

1

2

)n

.

Since
∞∑

n=1

(
1

2

)n

converges (it is a geometric series with r = 1
2 ), we conclude by the Comparison Test that

∞∑
n=1

1

n2n
also

converges.

20.
∞∑

n=1

n3

n5 + 4n + 1

solution For n ≥ 1,

n3

n5 + 4n + 1
≤ n3

n5 = 1

n2
.
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The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=1

n3

n5 + 4n + 1
also converges.

21.
∞∑

n=1

1

n1/3 + 2n

solution For n ≥ 1,

1

n1/3 + 2n
≤ 1

2n

The series
∑∞

n=1
1

2n
is a geometric series with r = 1

2
, so it converges. By the Comparison test, so does

∞∑
n=1

1

n1/3 + 2n
.

22.
∞∑

n=1

1√
n3 + 2n − 1

solution For n ≥ 1, we have 2n − 1 ≥ 0 so that

1√
n3 + 2n − 1

≤ 1√
n3

= 1

n3/2
.

This latter series is a p-series with p = 3
2 > 1, so it converges. By the Comparison Test, so does

∞∑
n=1

1√
n3 + 2n − 1

.

23.
∞∑

m=1

4

m! + 4m

solution For m ≥ 1,

4

m! + 4m
≤ 4

4m
=
(

1

4

)m−1
.

The series
∞∑

m=1

(
1

4

)m−1
is a geometric series with r = 1

4
, so it converges. By the Comparison Test we can therefore

conclude that the series
∞∑

m=1

4

m! + 4m
also converges.

24.
∞∑

n=4

√
n

n − 3

solution For n ≥ 4,
√

n

n − 3
≥

√
n

n
= 1

n1/2
.

The series
∞∑

n=1

1

n1/2
is a p-series with p = 1

2
< 1, so it diverges, and it continues to diverge if we drop the terms

n = 1, 2, 3; that is,
∞∑

n=4

1

n1/2
also diverges. By the Comparison Test we can therefore conclude that series

∞∑
n=4

√
n

n − 3

diverges.

25.
∞∑

k=1

sin2 k

k2

solution For k ≥ 1, 0 ≤ sin2 k ≤ 1, so

0 ≤ sin2 k

k2
≤ 1

k2
.

The series
∞∑

k=1

1

k2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

k=1

sin2k

k2
also converges.
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26.
∞∑

k=2

k1/3

k5/4 − k

solution For k ≥ 2, k5/4 − k < k5/4 so that

k1/3

k5/4 − k
≥ k1/3

k5/4
= 1

k11/12

The series
∑∞

k=2
1

k11/12
is a p-series with p = 11

12
< 1, so it diverges. By the Comparison Test, so does

∞∑
k=2

k1/3

k5/4 − k
.

27.
∞∑

n=1

2

3n + 3−n

solution Since 3−n > 0 for all n,

2

3n + 3−n
≤ 2

3n
= 2

(
1

3

)n

.

The series
∞∑

n=1

2

(
1

3

)n

is a geometric series with r = 1

3
, so it converges. By the Comparison Theorem we can therefore

conclude that the series
∞∑

n=1

2

3n + 3−n
also converges.

28.
∞∑

k=1

2−k2

solution For k ≥ 1, k2 ≥ k and

1

2k2 ≤ 1

2k
=
(

1

2

)k

.

The series
∞∑

k=1

(
1

2

)k

is a geometric series with r = 1

2
, so it converges. By the Comparison Test we can therefore conclude

that the series
∞∑

k=1

1

2k2 =
∞∑

k=1

2−k2
also converges.

29.
∞∑

n=1

1

(n + 1)!
solution Note that for n ≥ 2,

(n + 1)! = 1 · 2 · 3 · · · n · (n + 1)︸ ︷︷ ︸
n factors

≤ 2n

so that

∞∑
n=1

1

(n + 1)! = 1 +
∞∑

n=2

1

(n + 1)! ≤ 1 +
∞∑

n=2

1

2n

But
∑∞

n=2
1

2n
is a geometric series with ratio r = 1

2
, so it converges. By the comparison test,

∞∑
n=1

1

(n + 1)! converges as

well.

30.
∞∑

n=1

n!
n3

solution Note that for n ≥ 4, we have (n − 1)(n − 2) > n [to see this, solve the equation (n − 1)(n − 2) = n for n;

the positive root is 2 + √
2 ≈ 3.4]. Thus

∞∑
n=4

n!
n3

=
∞∑

n=4

n(n − 1)(n − 2)(n − 3)!
n3

≥
∞∑

n=4

(n − 3)!
n

≥
∞∑

n=4

1

n

But
∑∞

n=4
1

n
is the harmonic series, which diverges, so that

∑∞
n=4

n!
n3 also diverges. Adding back in the terms for n = 1,

2, and 3 does not affect this result. Thus the original series diverges.



March 31, 2011

1252 C H A P T E R 10 INFINITE SERIES

Exercise 31–36: For all a > 0 and b > 1, the inequalities

ln n ≤ na, na < bn

are true for n sufficiently large (this can be proved using L’Hopital’s Rule). Use this, together with the Comparison
Theorem, to determine whether the series converges or diverges.

31.
∞∑

n=1

ln n

n3

solution For n sufficiently large (say n = k, although in this case n = 1 suffices), we have ln n ≤ n, so that

∞∑
n=k

ln n

n3
≤

∞∑
n=k

n

n3
=

∞∑
n=k

1

n2

This is a p-series with p = 2 > 1, so it converges. Thus
∑∞

n=k
ln n
n3 also converges; adding back in the finite number of

terms for 1 ≤ n ≤ k does not affect this result.

32.
∞∑

m=2

1

ln m

solution For m > 1 sufficiently large (say m = k, although in this case m = 2 suffices), we have ln m ≤ m, so that

∞∑
m=k

1

ln m
≥

∞∑
m=k

1

m

This is the harmonic series, which diverges (the absence of the finite number of terms for m = 1, . . . , k − 1 does not

affect convergence). By the comparison theorem,
∞∑

m=2

1

ln m
also diverges (again, ignoring the finite number of terms for

m = 1, . . . , k − 1 does not affect convergence).

33.
∞∑

n=1

(ln n)100

n1.1

solution Choose N so that ln n ≤ n0.0005 for n ≥ N . Then also for n > N , (ln n)100 ≤ (n0.0005)100 = n0.05. Then

∞∑
n=N

(ln n)100

n1.1
≤

∞∑
n=N

n0.05

n1.1
=

∞∑
n=N

1

n1.05

But
∞∑

n=N

1

n1.05
is a p-series with p = 1.05 > 1, so is convergent. It follows that

∑∞
n=N

(ln n)100
n1.1 is also convergent;

adding back in the finite number of terms for n = 1, 2, . . . , N − 1 shows that
∞∑

n=1

(ln n)100

n1.1
converges as well.

34.
∞∑

n=1

1

(ln n)10

solution Choose N such that ln n ≤ n0.1 for n ≥ N ; then also (ln n)10 ≤ n for n ≥ N . So we have

∞∑
n=N

1

(ln n)10
≥

∞∑
n=N

1

n

The latter sum is the harmonic series, which diverges, so the series on the left diverges as well. Adding back in the finite

number of terms for n < N shows that
∞∑

n=1

1

(ln n)10
diverges.

35.
∞∑

n=1

n

3n

solution Choose N such that n ≤ 2n for n ≥ N . Then

∞∑
n=N

n

3n
≤

∞∑
n=N

(
2

3

)n
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The latter sum is a geometric series with r = 2

3
< 1, so it converges. Thus the series on the left converges as well. Adding

back in the finite number of terms for n < N shows that
∞∑

n=1

n

3n
converges.

36.
∞∑

n=1

n5

2n

solution Choose N such that n5 ≤ 1.5n for n ≥ N . Then

∞∑
n=N

n5

2n
≤

∞∑
n=N

(
1.5

2

)n

The latter sum is a geometric series with r = 1.5

2
< 1, so it converges. Thus the series on the left converges as well.

Adding back in the finite number of terms for n < N shows that
∞∑

n=1

n5

2n
converges.

37. Show that
∞∑

n=1

sin
1

n2
converges. Hint: Use the inequality sin x ≤ x for x ≥ 0.

solution For n ≥ 1,

0 ≤ 1

n2
≤ 1 < π;

therefore, sin 1
n2 > 0 for n ≥ 1. Moreover, for n ≥ 1,

sin
1

n2
≤ 1

n2
.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=1

sin
1

n2
also converges.

38. Does
∞∑

n=2

sin(1/n)

ln n
converge?

solution No, it diverges. Either the Comparison Theorem or the Limit Comparison Theorem may be used. Using the
Comparison Theorem, recall that

sin x

x
> cos x for x > 0

so that sin x > x cos x. Substituting 1/n for x gives

sin

(
1

n

)
>

1

n
cos

(
1

n

)
= cos(1/n)

n
≥ 1

2n

since cos

(
1

n

)
≥ 1

2
for n ≥ 2. Thus

∞∑
n=1

sin(1/n)

ln n
>

∞∑
n=1

1

2n ln n

Apply the Integral Test to the latter expression, making the substitution u = ln x:∫ ∞
1

1

2x ln x
dx = 1

2

∫ ∞
0

1

u
du = 1

2
ln u

∣∣∞
0

and the integral diverges. Thus

∞∑
n=1

1

2n ln n
diverges, and thus

∞∑
n=1

sin(1/n)

ln n
diverges as well.
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Applying the Limit Comparison Test is similar but perhaps simpler: Recall that

lim
x→∞

sin(1/x)

1/x
= lim

x→0

sin x

x
= 1

so apply the Limit Comparison Test with bn = 1/x

ln x
:

L = lim
x→∞

sin(1/x)

ln x
· ln x

1/x
= lim

x→∞
sin(1/x)

1/x
= 1

so that either both series converge or both diverge. But by the Integral Test as above,

∞∑
n=1

(1/x)

ln x
=

∞∑
n=1

1

x ln x

diverges.

In Exercises 39–48, use the Limit Comparison Test to prove convergence or divergence of the infinite series.

39.
∞∑

n=2

n2

n4 − 1

solution Let an = n2

n4 − 1
. For large n,

n2

n4 − 1
≈ n2

n4
= 1

n2
, so we apply the Limit Comparison Test with bn = 1

n2
.

We find

L = lim
n→∞

an

bn
= lim

n→∞

n2

n4−1
1
n2

= lim
n→∞

n4

n4 − 1
= 1.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence,

∞∑
n=2

1

n2
also converges. Because L exists, by the

Limit Comparison Test we can conclude that the series
∞∑

n=2

n2

n4 − 1
converges.

40.
∞∑

n=2

1

n2 − √
n

solution Let an = 1

n2 − √
n

. For large n,
1

n2 − √
n

≈ 1

n2
, so we apply the Limit Comparison Test with bn = 1

n2
.

We find

L = lim
n→∞

an

bn
= lim

n→∞

1
n2−√

n

1
n2

= lim
n→∞

n2

n2 − √
n

= 1.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence, the series

∞∑
n=2

1

n2
also converges. Because L

exists, by the Limit Comparison Test we can conclude that the series
∞∑

n=2

1

n2 − √
n

converges.

41.
∞∑

n=2

n√
n3 + 1

solution Let an = n√
n3 + 1

. For large n,
n√

n3 + 1
≈ n√

n3
= 1√

n
, so we apply the Limit Comparison test with

bn = 1√
n

. We find

L = lim
n→∞

an

bn
= lim

n→∞

n√
n3+1
1√
n

= lim
n→∞

√
n3√

n3 + 1
= 1.
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The series
∞∑

n=1

1√
n

is a p-series with p = 1
2 < 1, so it diverges; hence,

∞∑
n=2

1√
n

also diverges. Because L > 0, by the

Limit Comparison Test we can conclude that the series
∞∑

n=2

n√
n3 + 1

diverges.

42.
∞∑

n=2

n3√
n7 + 2n2 + 1

solution Let an be the general term of our series. Observe that

an = n3√
n7 + 2n2 + 1

= n−3 · n3

n−3 ·
√

n7 + 2n2 + 1
= 1√

n + 2n−4 + n−6

This suggests that we apply the Limit Comparison Test, comparing our series with

∞∑
n=2

bn =
∞∑

n=2

1

n1/2

The ratio of the terms is

an

bn
= 1√

n + 2n−4 + n−6
·
√

n

1
= 1√

1 + 2n−5 + n−7

Hence

lim
n→∞

an

bn
= lim

n→∞
1√

1 + 2n−5 + n−7
= 1

The p-series
∞∑

n=2

1

n1/2
diverges since p = 1/2 < 1. Therefore, our original series diverges.

43.
∞∑

n=3

3n + 5

n(n − 1)(n − 2)

solution Let an = 3n + 5

n(n − 1)(n − 2)
. For large n,

3n + 5

n(n − 1)(n − 2)
≈ 3n

n3
= 3

n2
, so we apply the Limit Comparison

Test with bn = 1

n2
. We find

L = lim
n→∞

an

bn
= lim

n→∞

3n+5
n(n+1)(n+2)

1
n2

= lim
n→∞

3n3 + 5n2

n(n + 1)(n + 2)
= 3.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence, the series

∞∑
n=3

1

n2
also converges. Because L

exists, by the Limit Comparison Test we can conclude that the series
∞∑

n=3

3n + 5

n(n − 1)(n − 2)
converges.

44.
∞∑

n=1

en + n

e2n − n2

solution Let

an = en + n

e2n − n2
= en + n

(en − n)(en + n)
= 1

en − n
.

For large n,

1

en − n
≈ 1

en
= e−n,

so we apply the Limit Comparison Test with bn = e−n. We find

L = lim
n→∞

an

bn
= lim

n→∞
1

en−n

e−n
= lim

n→∞
en

en − n
= 1.
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The series
∞∑

n=1

e−n =
∞∑

n=1

(
1

e

)n

is a geometric series with r = 1
e < 1, so it converges. Because L exists, by the Limit

Comparison Test we can conclude that the series
∞∑

n=1

en + n

e2n − n2
also converges.

45.
∞∑

n=1

1√
n + ln n

solution Let

an = 1√
n + ln n

For large n,
√

n + ln n ≈ √
n, so apply the Comparison Test with bn = 1√

n
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1√

n + ln n
·
√

n

1
= lim

n→∞
1

1 + ln n√
n

= 1

The series
∞∑

n=1

1√
n

is a p-series with p = 1

2
< 1, so it diverges. Because L exists, the Limit Comparison Test tells us the

the original series also diverges.

46.
∞∑

n=1

ln(n + 4)

n5/2

solution Let

an = ln(n + 4)

n5/2

For large n, an ≈ ln n

n5/2
, so apply the Comparison Test with bn = ln n

n5/2
. We find

L = lim
n→∞

an

bn
= lim

n→∞
ln(n + 4)

n5/2
· n5/2

ln n
= lim

n→∞
ln(n + 4)

ln n

Applying L’Hôpital’s rule gives

L = lim
n→∞

ln(n + 4)

ln n
= lim

n→∞
1/(n + 4)

1/n
= lim

n→∞
n

n + 4
= lim

n→∞
1

1 + 4/n
= 1

To see that
∑∞

n=1 bn converges, choose N so that ln n < n for n ≥ N ; then

∞∑
n=N

ln n

n5/2
≤

∞∑
n=N

n

n5/2
=

∞∑
n=N

1

n3/2

which is a p-series with p = 3

2
> 1, so it converges. Adding back in the finite number of terms for n < N shows that∑

bn converges as well. Since L exists and
∑

bn converges, the Limit Comparison Test tells us that
∑∞

n=1 an converges.

47.
∞∑

n=1

(
1 − cos

1

n

)
Hint: Compare with

∞∑
n=1

n−2.

solution Let an = 1 − cos
1

n
, and apply the Limit Comparison Test with bn = 1

n2
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1 − cos 1

n
1
n2

= lim
x→∞

1 − cos 1
x

1
x2

= lim
x→∞

− 1
x2 sin 1

x

− 2
x3

= 1

2
lim

x→∞
sin 1

x
1
x

.

As x → ∞, u = 1
x → 0, so

L = 1

2
lim

x→∞
sin 1

x
1
x

= 1

2
lim
u→0

sin u

u
= 1

2
.
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The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. Because L exists, by the Limit Comparison Test we can

conclude that the series
∞∑

n=1

(
1 − cos

1

n

)
also converges.

48.
∞∑

n=1

(1 − 2−1/n) Hint: Compare with the harmonic series.

solution Let an = 1 − 2−1/n, and apply the Limit Comparison Test with bn = 1

n
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1 − 2−1/n

1
n

= lim
x→∞

1 − 2−1/x

1
x

= lim
x→∞

− 1
x2 (ln 2)2−1/x

− 1
x2

= lim
x→∞

(
2−1/x ln 2

)
= ln 2.

The harmonic series
∞∑

n=1

1

n
diverges; because L > 0, we can conclude by the Limit Comparison Test that the series

∞∑
n=1

(1 − 2−1/n) also diverges.

In Exercises 49–74, determine convergence or divergence using any method covered so far.

49.
∞∑

n=4

1

n2 − 9

solution Apply the Limit Comparison Test with an = 1

n2 − 9
and bn = 1

n2
:

L = lim
n→∞

an

bn
= lim

n→∞

1
n2−9

1
n2

= lim
n→∞

n2

n2 − 9
= 1.

Since the p-series
∞∑

n=1

1

n2
converges, the series

∞∑
n=4

1

n2
also converges. Because L exists, by the Limit Comparison Test

we can conclude that the series
∞∑

n=4

1

n2 − 9
converges.

50.
∞∑

n=1

cos2 n

n2

solution For all n ≥ 1, 0 ≤ cos2n ≤ 1, so

0 ≤ cos2n

n2
≤ 1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series; hence, by the Comparison Test we can conclude that the series

∞∑
n=1

cos2n

n2
also

converges.

51.
∞∑

n=1

√
n

4n + 9

solution Apply the Limit Comparison Test with an =
√

n

4n + 9
and bn = 1√

n
:

L = lim
n→∞

an

bn
= lim

n→∞

√
n

4n+9
1√
n

= lim
n→∞

n

4n + 9
= 1

4
.

The series
∞∑

n=1

1√
n

is a divergent p-series. Because L > 0, by the Limit Comparison Test we can conclude that the series

∞∑
n=1

√
n

4n + 9
also diverges.
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52.
∞∑

n=1

n − cos n

n3

solution Apply the Limit Comparison Test with an = n − cos n

n3
and bn = 1

n2
:

L = lim
n→∞

an

bn
= lim

n→∞
n−cos n

n3

1
n2

= lim
n→∞

(
1 − cos n

n

)
= 1.

The series
∞∑

n=1

1

n2
is a convergent p-series. Because L exists, by the Limit Comparison Test we can conclude that the

series
∞∑

n=1

n − cos n

n3
also converges.

53.
∞∑

n=1

n2 − n

n5 + n

solution First rewrite an = n2 − n

n5 + n
= n (n − 1)

n
(
n4 + 1

) = n − 1

n4 + 1
and observe

n − 1

n4 + 1
<

n

n4
= 1

n3

for n ≥ 1. The series
∞∑

n=1

1

n3
is a convergent p-series, so by the Comparison Test we can conclude that the series

∞∑
n=1

n2 − n

n5 + n
also converges.

54.
∞∑

n=1

1

n2 + sin n

solution Apply the Limit Comparison Test with an = 1

n2 + sin n
and bn = 1

n2
:

L = lim
n→∞

an

bn
= lim

n→∞

1
n2+sin n

1
n2

= lim
n→∞

1

1 + sin n
n2

= 1.

The series
∞∑

n=1

1

n2
is a convergent p-series. Because L exists, by the Limit Comparison Test we can conclude that the

series
∞∑

n=1

1

n2 + sin n
also converges.

55.
∞∑

n=5

(4/5)−n

solution

∞∑
n=5

(
4

5

)−n

=
∞∑

n=5

(
5

4

)n

which is a geometric series starting at n = 5 with ratio r = 5

4
> 1. Thus the series diverges.

56.
∞∑

n=1

1

3n2

solution Because n2 ≥ n for n ≥ 1, 3n2 ≥ 3n and

1

3n2 ≤ 1

3n
=
(

1

3

)n

.
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The series
∞∑

n=1

(
1

3

)n

is a geometric series with r = 1

3
, so it converges. By the Comparison Test we can therefore conclude

that the series
∞∑

n=1

1

3n2 also converges.

57.
∞∑

n=2

1

n3/2 ln n

solution For n ≥ 3, ln n > 1, so n3/2 ln n > n3/2 and

1

n3/2 ln n
<

1

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series, so the series

∞∑
n=3

1

n3/2
also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=3

1

n3/2 ln n
converges. Hence, the series

∞∑
n=2

1

n3/2 ln n
also converges.

58.
∞∑

n=2

(ln n)12

n9/8

solution By the comment preceding Exercise 31, we can choose N so that for n ≥ N , we have ln n < n1/192. Then

also for n ≥ N we have (ln n)12 < n12/192 = n1/16. Then

∞∑
n=N

(ln n)12

n9/8
≤

∞∑
n=N

n1/16

n9/8
=

∞∑
n=N

1

n17/16

which is a convergent p-series. Thus the series on the left converges as well; adding back in the finite number of terms

for n ≤ N shows that
∞∑

n=2

(ln n)12

n9/8
converges.

59.
∞∑

k=1

41/k

solution

lim
k→∞ ak = lim

k→∞ 41/k = 40 = 1 	= 0;

therefore, the series
∞∑

k=1

41/k diverges by the Divergence Test.

60.
∞∑

n=1

4n

5n − 2n

solution Apply the Limit Comparison Test with an = 4n

5n − 2n
and bn = 4n

5n
:

L = lim
n→∞

an

bn
= lim

n→∞
4n

5n−2n

4n

5n

= lim
n→∞

1

1 − 2n
5n

.

Now,

lim
n→∞

2n

5n
= lim

x→∞
2x

5x
= lim

x→∞
2

5x ln 5
= 0,

so

L = lim
n→∞

an

bn
= 1

1 − 0
= 1.

The series
∞∑

n=1

(
4

5

)n

is a convergent geometric series. Because L exists, by the Limit Comparison Test we can conclude

that the series
∞∑

n=1

4n

5n − 2n
also converges.
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61.
∞∑

n=2

1

(ln n)4

solution By the comment preceding Exercise 31, we can choose N so that for n ≥ N , we have ln n < n1/8, so that

(ln n)4 < n1/2. Then

∞∑
n=N

1

(ln n)4
>

∞∑
n=N

1

n1/2

which is a divergent p-series. Thus the series on the left diverges as well, and adding back in the finite number of terms

for n < N does not affect the result. Thus
∞∑

n=2

1

(ln n)4
diverges.

62.
∞∑

n=1

2n

3n − n

solution Apply the Limit Comparison Test with an = 2n

3n − n
and bn = 2n

3n
:

L = lim
n→∞

an

bn
= lim

n→∞
2n

3n−n

2n

3n

= lim
n→∞

1

1 − n
3n

.

Now,

lim
n→∞

n

3n
= lim

x→∞
x

3x
= lim

x→∞
1

3x ln 3
= 0,

so

L = lim
n→∞

an

bn
= 1

1 − 0
= 1.

The series
∞∑

n=1

(
2

3

)n

is a convergent geometric series. Because L exists, by the Limit Comparison Test we can conclude

that the series
∞∑

n=1

2n

3n − n
also converges.

63.
∞∑

n=1

1

n ln n − n

solution For n ≥ 2, n ln n − n ≤ n ln n; therefore,

1

n ln n − n
≥ 1

n ln n
.

Now, let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous, positive and decreasing, so the Integral Test applies. Using

the substitution u = ln x, du = 1
x dx, we find

∫ ∞
2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series
∞∑

n=2

1

n ln n
also diverges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=2

1

n ln n − n
diverges.

64.
∞∑

n=1

1

n(ln n)2 − n

solution Use the Integral Test. Note that x(ln x)2 − x has a zero at x = e, so restrict the integral to [4, ∞):∫ ∞
4

1

x(ln x)2 − x
dx
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Substitute u = ln x so that du = 1

x
dx to get

∫ ∞
ln 4

1

u2 − 1
du = lim

R→∞

(
1

2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣
∣∣∣∣R
4

)
= 1

2
lim

R→∞

(
ln

(
R − 1

R + 1

)
− ln

(
3

5

))

= 1

2

(
ln lim

R→∞

(
R − 1

R + 1

)
− ln

(
3

5

))
= 1

2

(
ln 1 − ln

(
3

5

))
= 1

2
ln

(
5

3

)
< ∞

Since the integral converges, the series does as well starting at n = 4, using the Integral Test. Adding in the terms for
n = 1, 2, 3 does not affect this result.

65.
∞∑

n=1

1

nn

solution For n ≥ 2, nn ≥ 2n; therefore,

1

nn
≤ 1

2n
=
(

1

2

)n

.

The series
∞∑

n=1

(
1

2

)n

is a convergent geometric series, so
∞∑

n=2

(
1

2

)n

also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=2

1

nn
converges. Hence, the series

∞∑
n=1

1

nn
converges.

66.
∞∑

n=1

n2 − 4n3/2

n3

solution Let an = 1
n and bn = − 4

n3/2 . Then

∞∑
n=1

(an + bn) =
∞∑

n=1

n2 − 4n3/2

n3

∞∑
n=1

an diverges since it is the harmonic series

∞∑
n=1

bn is a p-series with p = 3

2
> 1, so converges

Since
∑

an diverges and
∑

bn converges, it follows that
∑

(an + bn) diverges.

67.
∞∑

n=1

1 + (−1)n

n

solution Let

an = 1 + (−1)n

n

Then

an =
{

0 n odd
2

2k
= 1

k
n = 2k even

Therefore, {an} consists of 0s in the odd places and the harmonic series in the even places, so
∑∞

i=1 an is just the sum of
the harmonic series, which diverges. Thus

∑∞
i=1 an diverges as well.

68.
∞∑

n=1

2 + (−1)n

n3/2

solution For n ≥ 1

0 <
2 + (−1)n

n3/2
≤ 2 + 1

n3/2
= 3

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series; hence, the series

∞∑
n=1

3

n3/2
also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=1

2 + (−1)n

n3/2
converges.



March 31, 2011

1262 C H A P T E R 10 INFINITE SERIES

69.
∞∑

n=1

sin
1

n

solution Apply the Limit Comparison Test with an = sin
1

n
and bn = 1

n
:

L = lim
n→∞

sin 1
n

1
n

= lim
u→0

sin u

u
= 1,

where u = 1
n . The harmonic series diverges. Because L > 0, by the Limit Comparison Test we can conclude that the

series
∞∑

n=1

sin
1

n
also diverges.

70.
∞∑

n=1

sin(1/n)√
n

solution Apply the Limit Comparison Test with an = sin(1/n)√
n

and bn = 1/n√
n

:

L = lim
n→∞

sin(1/n)√
n

·
√

n

1/n
= lim

n→∞
sin(1/n)

1/n
= lim

u→0

sin u

u
= 1

so that
∑

an and
∑

bn either both converge or both diverge. But

∞∑
n=1

bn =
∞∑

n=1

1/n√
n

=
∞∑

n=1

1

n3/2

is a convergent p-series. Thus
∞∑

n=1

sin(1/n)√
n

converges as well.

71.
∞∑

n=1

2n + 1

4n

solution For n ≥ 3, 2n + 1 < 2n, so

2n + 1

4n
<

2n

4n
=
(

1

2

)n

.

The series
∞∑

n=1

(
1

2

)n

is a convergent geometric series, so
∞∑

n=3

(
1

2

)n

also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=3

2n + 1

4n
converges. Finally, the series

∞∑
n=1

2n + 1

4n
converges.

72.
∞∑

n=3

1

e
√

n

solution Apply the integral test, making the substitution z = √
x so that z2 = x and 2z dz = dx:

∫ ∞
3

1

e
√

x
dx =

∫ ∞
3

e−x1/2
dx =

∫ ∞
√

3
2ze−z dz

Evaluate this integral using integration by parts with u = 2z, dv = e−z dz:∫ ∞
√

3
2ze−z dz = uv

∣∣∣∣∞√
3

−
∫ ∞
√

3
v du = (−2ze−z)

∣∣∣∣∞√
3

−
∫ ∞
√

3
(−2e−z) dz = 2

√
3e−√

3 − (2e−z)

∣∣∣∣∞√
3

= 2
√

3e−√
3 + 2e−√

3 < ∞

Since the integral converges, so does the series
∞∑

n=3

1

e
√

n
.
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73.
∞∑

n=4

ln n

n2 − 3n

solution By the comment preceding Exercise 31, we can choose N ≥ 4 so that for n ≥ N , ln n < n1/2. Then

∞∑
n=N

ln n

n2 − 3n
≤

∞∑
n=N

n1/2

n2 − 3n
=

∞∑
n=N

1

n3/2 − 3n1/2

To evaluate convergence of the latter series, let an = 1

n3/2 − 3n1/2
and bn = 1

n3/2
, and apply the Limit Comparison

Test:

L = lim
n→∞

an

bn
= lim

n→∞
1

n3/2 − 3n1/2
· n3/2 = lim

n→∞
1

1 − 3n−1
= 0

Thus
∑

an converges if
∑

bn does. But
∑

bn is a convergent p-series. Thus
∑

an converges and, by the comparison
test, so does the original series. Adding back in the finite number of terms for n < N does not affect convergence.

74.
∞∑

n=1

1

3ln n

solution Note that

3ln n = (eln 3)ln n = (eln n)ln 3 = nln 3.

Thus the sum is a p-series with p = ln 3 > 1, so is convergent.

75.
∞∑

n=2

1

n1/2 ln n

solution By the comment preceding Exercise 31, we can choose N ≥ 2 so that for n ≥ N , ln n < n1/4. Then

∞∑
n=N

1

n1/2 ln n
>

∞∑
n=N

1

n3/4

which is a divergent p-series. Thus the original series diverges as well - as usual, adding back in the finite number of
terms for n < N does not affect convergence.

76.
∞∑

n=1

1

n3/2 − ln4 n

solution Let

an = 1

n3/2 − ln4 n
, bn = 1

n3/2
,

and apply the Limit Comparison Test:

L = lim
n→∞

an

bn
= lim

n→∞
n3/2

n3/2 − ln4 n
= lim

n→∞
1

1 − ln4 n
n3/2

But by the comment preceding Exercise 31, ln n, and thus ln4 n, are eventually smaller than any positive power of n, so

for n sufficiently large,
ln4 n

n3/2
is arbitrarily small. Thus L = 1 and

∑
an converges if and only if

∑
bn does. But

∑
bn is

a convergent p-series, so
∞∑

n=1

1

n3/2 − ln4 n
converges.

77.
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17

solution Apply the Limit Comparison Test with

an = 4n2 + 15n

3n4 − 5n2 − 17
, bn = 4n2

3n4
= 4

3n2

We have

L = lim
n→∞

an

bn
= lim

n→∞
4n2 + 15n

3n4 − 5n2 − 17
· 3n2

4
= lim

n→∞
12n4 + 45n3

12n4 − 20n2 − 68
= lim

n→∞
12 + 45/n

12 − 20/n2 − 68/n4
= 1
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Now,
∑∞

n=1 bn is a p-series with p = 2 > 1, so converges. Since L = 1, we see that
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17
converges as

well.

78.
∞∑

n=1

n

4−n + 5−n

solution Note that

lim
n→∞

n

4−n + 5−n
= lim

n→∞
n4n

1 +
(

4
5

)n

This limit approaches ∞/1 = ∞, so the terms of the sequence do not tend to zero. Thus the series is divergent.

79. For which a does
∞∑

n=2

1

n(ln n)a
converge?

solution First consider the case a > 0 but a 	= 1. Let f (x) = 1

x(ln x)a
. This function is continuous, positive and

decreasing for x ≥ 2, so the Integral Test applies. Now,

∫ ∞
2

dx

x(ln x)a
= lim

R→∞

∫ R

2

dx

x(ln x)a
= lim

R→∞

∫ ln R

ln 2

du

ua
= 1

1 − a
lim

R→∞

(
1

(ln R)a−1
− 1

(ln 2)a−1

)
.

Because

lim
R→∞

1

(ln R)a−1
=
{

∞, 0 < a < 1

0, a > 1

we conclude the integral diverges when 0 < a < 1 and converges when a > 1. Therefore

∞∑
n=2

1

n(ln n)a
converges for a > 1 and diverges for 0 < a < 1.

Next, consider the case a = 1. The series becomes
∞∑

n=2

1

n ln n
. Let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous,

positive and decreasing, so the Integral Test applies. Using the substitution u = ln x, du = 1
x dx, we find

∫ ∞
2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series also diverges.

Finally, consider the case a < 0. Let b = −a > 0 so the series becomes
∞∑

n=2

(ln n)b

n
. Since ln n > 1 for all n ≥ 3, it

follows that

(ln n)b > 1 so
(ln n)b

n
>

1

n
.

The series
∞∑

n=3

1

n
diverges, so by the Comparison Test we can conclude that

∞∑
n=3

(ln n)b

n
also diverges. Consequently,

∞∑
n=2

(ln n)b

n
diverges. Thus,

∞∑
n=2

1

n(ln n)a
diverges for a < 0.

To summarize:

∞∑
n=2

1

n(ln n)a
converges if a > 1 and diverges if a ≤ 1.
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80. For which a does
∞∑

n=2

1

na ln n
converge?

solution First consider the case a > 1. For n ≥ 3, ln n > 1 and

1

na ln n
<

1

na
.

The series
∞∑

n=1

1

na
is a p-series with p = a > 1, so it converges; hence,

∞∑
n=3

1

na
also converges. By the Comparison Test

we can therefore conclude that the series
∞∑

n=3

1

na ln n
converges, which implies the series

∞∑
n=2

1

na ln n
also converges.

For a ≤ 1, na ≤ n so

1

na ln n
≥ 1

n ln n

for n ≥ 2. Let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous, positive and decreasing, so the Integral Test applies.

Using the substitution u = ln x, du = 1
x dx, we find

∫ ∞
2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series
∞∑

n=2

1

n ln n
also diverges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=2

1

na ln n
diverges.

To summarize,

∞∑
n=2

1

na ln n
converges for a > 1 and diverges for a ≤ 1.

Approximating Infinite Sums In Exercises 81–83, let an = f (n), where f (x) is a continuous, decreasing function such
that f (x) ≥ 0 and

∫∞
1 f (x) dx converges.

81. Show that ∫ ∞
1

f (x) dx ≤
∞∑

n=1

an ≤ a1 +
∫ ∞

1
f (x) dx 3

solution From the proof of the Integral Test, we know that

a2 + a3 + a4 + · · · + aN ≤
∫ N

1
f (x) dx ≤

∫ ∞
1

f (x) dx;

that is,

SN − a1 ≤
∫ ∞

1
f (x) dx or SN ≤ a1 +

∫ ∞
1

f (x) dx.

Also from the proof of the Integral test, we know that

∫ N

1
f (x) dx ≤ a1 + a2 + a3 + · · · + aN−1 = SN − aN ≤ SN .

Thus, ∫ N

1
f (x) dx ≤ SN ≤ a1 +

∫ ∞
1

f (x) dx.

Taking the limit as N → ∞ yields Eq. (3), as desired.
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82. Using Eq. (3), show that

5 ≤
∞∑

n=1

1

n1.2
≤ 6

This series converges slowly. Use a computer algebra system to verify that SN < 5 for N ≤ 43,128 and S43,129 ≈
5.00000021.

solution By Eq. (3), we have

∫ ∞
1

dx

x1.2
≤

∞∑
n=1

1

n1.2
≤ 1 +

∫ ∞
1

dx

x1.2
.

Since ∫ ∞
1

dx

x1.2
= lim

R→∞

∫ R

1

dx

x1.2
= lim

R→∞

(
1

0.2
− R−0.2

0.2

)
= 5,

it follows that

5 ≤
∞∑

n=1

1

n1.2
≤ 6.

Because an = n−1.2 ≥ 0 for all N , SN is increasing and it suffices to show that SN < 5 for N = 43,128 to conclude
that SN < 5 for all N ≤ 43,128. Using a computer algebra system, we obtain:

S43,128 =
43,128∑
n=1

1

n1.2
= 4.9999974685

and

S43,129 =
43,129∑
n=1

1

n1.2
= 5.0000002118.

83. Let S =
∞∑

n=1

an. Arguing as in Exercise 81, show that

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤ S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx 4

Conclude that

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1 5

This provides a method for approximating S with an error of at most aM+1.

solution Following the proof of the Integral Test and the argument in Exercise 81, but starting with n = M + 1 rather
than n = 1, we obtain ∫ ∞

M+1
f (x) dx ≤

∞∑
n=M+1

an ≤ aM+1 +
∫ ∞
M+1

f (x) dx.

Adding
M∑

n=1

an to each part of this inequality yields

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤
∞∑

n=1

an = S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx.

Subtracting
M∑

n=1

an +
∫ ∞
M+1

f (x) dx from each part of this last inequality then gives us

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1.
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84. Use Eq. (4) with M = 43,129 to prove that

5.5915810 ≤
∞∑

n=1

1

n1.2
≤ 5.5915839

solution Using Eq. (4) with f (x) = 1

x1.2
, an = 1

n1.2
and M = 43129, we find

S43129 +
∫ ∞

43130

dx

x1.2
≤

∞∑
n=1

1

n1.2
≤ S43130 +

∫ ∞
43130

dx

x1.2
.

Now,

S43129 = 5.0000002118;

S43130 = S43129 + 1

431301.2
= 5.0000029551;

and ∫ ∞
43130

dx

x1.2
= lim

R→∞

∫ R

43130

dx

x1.2
= −5 lim

R→∞

(
1

R0.2
− 1

431300.2

)
= 5

431300.2
= 0.5915808577.

Thus,

5.0000002118 + 0.5915808577 ≤
∞∑

n=1

1

n1.2
≤ 5.0000029551 + 0.5915808577,

or

5.5915810695 ≤
∞∑

n=1

1

n1.2
≤ 5.5915838128.

85. Apply Eq. (4) with M = 40,000 to show that

1.644934066 ≤
∞∑

n=1

1

n2
≤ 1.644934068

Is this consistent with Euler’s result, according to which this infinite series has sum π2/6?

solution Using Eq. (4) with f (x) = 1

x2
, an = 1

n2
and M = 40,000, we find

S40,000 +
∫ ∞

40,001

dx

x2
≤

∞∑
n=1

1

n2
≤ S40,001 +

∫ ∞
40,001

dx

x2
.

Now,

S40,000 = 1.6449090672;

S40,001 = S40,000 + 1

40,001
= 1.6449090678;

and ∫ ∞
40,001

dx

x2
= lim

R→∞

∫ R

40,001

dx

x2
= − lim

R→∞

(
1

R
− 1

40,001

)
= 1

40,001
= 0.0000249994.

Thus,

1.6449090672 + 0.0000249994 ≤
∞∑

n=1

1

n2
≤ 1.6449090678 + 0.0000249994,

or

1.6449340665 ≤
∞∑

n=1

1

n2
≤ 1.6449340672.

Since
π2

6
≈ 1.6449340668, our approximation is consistent with Euler’s result.
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86. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−6 to within an error less than 10−4. Check that your

result is consistent with that of Euler, who proved that the sum is equal to π6/945.

solution According to Eq. (5), if we choose M so that (M + 1)−6 < 10−4, we can then approximate the sum to

within 10−4. Solving (M + 1)−6 = 10−4 gives M + 1 = 10−2/3 ≈ 4.641, so the smallest such integral M is M = 4.
Denote by S the sum of the series. Then

0 ≤ S −
⎛
⎝ 4∑

n=1

n−6 +
∫ ∞

5
x−6 dx

⎞
⎠ ≤ (M + 1)−6 < 10−4

We have

4∑
n=1

n−6 = 1

1
+ 1

64
+ 1

729
+ 1

4096
≈ 1.017240883

∫ ∞
5

x−6 dx = −1

5
x−5

∣∣∣∣∞
5

= 1

56
≈ 0.000064

The sum of these two is ≈ 1.017304883, while
π6

945
≈ 1.017343063. These two values differ by approximately

0.000038180 < 10−4, so the result is consistent with Euler’s calculation.

87. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−5 to within an error less than 10−4.

solution Using Eq. (5) with f (x) = x−5 and an = n−5, we have

0 ≤
∞∑

n=1

n−5 −
⎛
⎝M+1∑

n=1

n−5 +
∫ ∞
M+1

x−5 dx

⎞
⎠ ≤ (M + 1)−5.

To guarantee an error less than 10−4, we need (M + 1)−5 ≤ 10−4. This yields M ≥ 104/5 − 1 ≈ 5.3, so we choose
M = 6. Now,

7∑
n=1

n−5 = 1.0368498887,

and ∫ ∞
7

x−5 dx = lim
R→∞

∫ R

7
x−5 dx = −1

4
lim

R→∞
(
R−4 − 7−4

)
= 1

4 · 74
= 0.0001041233.

Thus,

∞∑
n=1

n−5 ≈
7∑

n=1

n−5 +
∫ ∞

7
x−5 dx = 1.0368498887 + 0.0001041233 = 1.0369540120.

88. How far can a stack of identical books (of mass m and unit length) extend without tipping over? The stack will not
tip over if the (n + 1)st book is placed at the bottom of the stack with its right edge located at the center of mass of the
first n books (Figure 5). Let cn be the center of mass of the first n books, measured along the x-axis, where we take the
positive x-axis to the left of the origin as in Figure 6. Recall that if an object of mass m1 has center of mass at x1 and a
second object of m2 has center of mass x2, then the center of mass of the system has x-coordinate

m1x1 + m2x2

m1 + m2

(a) Show that if the (n + 1)st book is placed with its right edge at cn, then its center of mass is located at cn + 1
2 .

(b) Consider the first n books as a single object of mass nm with center of mass at cn and the (n + 1)st book as a second

object of mass m. Show that if the (n + 1)st book is placed with its right edge at cn, then cn+1 = cn + 1

2(n + 1)
.

(c) Prove that lim
n→∞ cn = ∞. Thus, by using enough books, the stack can be extended as far as desired without tipping

over.
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solution Let f (x) = 1
x . This function is continuous, positive and decreasing, so following the argument of Exercise

81, we know that ∫ N

1
f (x) dx ≤ SN ≤ a1 +

∫ N

1
f (x) dx,

or

ln N ≤ 1 + 1

2
+ 1

3
+ · · · + 1

N
≤ 1 + ln N.

Using the inequality on the right-hand side, we know that

S8100 ≤ 1 + ln 8100 = 9.999619 < 10;
using the inequality on the left-hand side, we can guarantee SN ≥ 100 by making ln N ≥ 100. Thus, we can take

N ≥ e100 ≈ 2.688 × 1043.

89. The following argument proves the divergence of the harmonic series S =
∞∑

n=1

1/n without using the Integral Test.

Let

S1 = 1 + 1

3
+ 1

5
+ · · · , S2 = 1

2
+ 1

4
+ 1

6
+ · · ·

Show that if S converges, then

(a) S1 and S2 also converge and S = S1 + S2.
(b) S1 > S2 and S2 = 1

2S.

Observe that (b) contradicts (a), and conclude that S diverges.

solution Assume throughout that S converges; we will derive a contradiction. Write

an = 1

n
, bn = 1

2n − 1
, cn = 1

2n

for the nth terms in the series S, S1, and S2. Since 2n − 1 ≥ n for n ≥ 1, we have bn < an. Since S = ∑
an converges,

so does S1 = ∑
bn by the Comparison Test. Also, cn = 1

2
an, so again by the Comparison Test, the convergence of S

implies the convergence of S2 = ∑
cn. Now, define two sequences

b′
n =

{
b(n+1)/2 n odd

0 n even

c′
n =

{
0 n odd

cn/2 n even

That is, b′
n and c′

n look like bn and cn, but have zeros inserted in the “missing” places compared to an. Then an = b′
n + c′

n;
also S1 = ∑

bn = ∑
b′
n and S2 = ∑

cn = ∑
c′
n. Finally, since S, S1, and S2 all converge, we have

S =
∞∑

n=1

an =
∞∑

n=1

(b′
n + c′

n) =
∞∑

n=1

b′
n +

∞∑
n=1

c′
n =

∞∑
n=1

bn +
∞∑

n=1

cn = S1 + S2

Now, bn > cn for every n, so that S1 > S2. Also, we showed above that cn = 1

2
an, so that 2S2 = S. Putting all this

together gives

S = S1 + S2 > S2 + S2 = 2S2 = S

so that S > S, a contradiction. Thus S must diverge.
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Further Insights and Challenges

90. Let S =
∞∑

n=2

an, where an = (ln(ln n))− ln n.

(a) Show, by taking logarithms, that an = n− ln(ln(ln n)).

(b) Show that ln(ln(ln n)) ≥ 2 if n > C, where C = eee2
.

(c) Show that S converges.

solution

(a) Let an = (ln(ln n))− ln n. Then

ln an = (− ln n) ln(ln(ln n)),

and

an = e(− ln n) ln(ln(ln n)) =
(
eln n

)− ln(ln(ln n)) = n− ln(ln(ln n)).

(b) Suppose n > eee2
. Then

ln n > ln eee2

= ee2 ;
ln(ln n) > ln ee2 = e2; and

ln(ln(ln n)) > ln e2 = 2.

(c) Combining the results from parts (a) and (b), we have

an = 1

nln(ln(ln n))
≤ 1

n2

for n > C = eee2
. The series

∞∑
n=1

1

n2
is a convergent p-series, so

∞∑
n=C+1

1

n2
also converges. By the Comparison Test we

can therefore conclude that the series
∞∑

n=C+1

an converges, which means that the series
∞∑

n=2

an converges.

91. Kummer’s Acceleration Method Suppose we wish to approximate S =
∞∑

n=1

1/n2. There is a similar telescoping

series whose value can be computed exactly (Example 1 in Section 10.2):

∞∑
n=1

1

n(n + 1)
= 1

(a) Verify that

S =
∞∑

n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)

Thus for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
6

(b) Explain what has been gained. Why is Eq. (6) a better approximation to S than is
M∑

n=1

1/n2?

(c) Compute

1000∑
n=1

1

n2
, 1 +

100∑
n=1

1

n2(n + 1)

Which is a better approximation to S, whose exact value is π2/6?
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solution

(a) Because the series
∞∑

n=1

1

n2
and

∞∑
n=1

1

n(n + 1)
both converge,

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)
=

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

1

n2
−

∞∑
n=1

1

n(n + 1)
=

∞∑
n=1

1

n2
= S.

Now,

1

n2
− 1

n(n + 1)
= n + 1

n2(n + 1)
− n

n2(n + 1)
= 1

n2(n + 1)
,

so, for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
.

(b) The series
∑∞

n=1
1

n2(n+1)
converges more rapidly than

∞∑
n=1

1

n2
since the degree of n in the denominator is larger.

(c) Using a computer algebra system, we find

1000∑
n=1

1

n2
= 1.6439345667 and 1 +

100∑
n=1

1

n2(n + 1)
= 1.6448848903.

The second sum is more accurate because it is closer to the exact solution
π2

6
≈ 1.6449340668.

92. The series S =
∞∑

k=1

k−3 has been computed to more than 100 million digits. The first 30 digits are

S = 1.202056903159594285399738161511

Approximate S using the Acceleration Method of Exercise 91 with M = 100 and auxiliary series

R =
∞∑

n=1

(n(n + 1)(n + 2))−1.

According to Exercise 46 in Section 10.2, R is a telescoping series with the sum R = 1
4 .

solution We compute the difference between the general term of the given series and the general term of the auxiliary
series:

1

k3
− 1

k(k + 1)(k + 2)
= (k + 1)(k + 2) − k2

k3(k + 1)(k + 2)
= k2 + 3k + 2 − k2

k3(k + 1)(k + 2)
= 3k + 2

k3(k + 1)(k + 2)

Hence,

∞∑
k=1

1

k3
=

∞∑
k=1

1

k(k + 1)(k + 2)
+

∞∑
k=1

3k + 2

k3(k + 1)(k + 2)
= 1

4
+

∞∑
k=1

3k + 2

k3(k + 1)(k + 2)

With M = 100 and using a computer algebra system, we find

∞∑
k=1

1

k3
≈ 1

4
+

100∑
k=1

3k + 2

k3(k + 1)(k + 2)
= 1.2020559349.
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10.4 Absolute and Conditional Convergence

Preliminary Questions
1. Give an example of a series such that

∑
an converges but

∑
|an| diverges.

solution The series
∑

(−1)n

3√n
converges by the Leibniz Test, but the positive series

∑ 1
3√n

is a divergent p-series.

2. Which of the following statements is equivalent to Theorem 1?

(a) If
∞∑

n=0

|an| diverges, then
∞∑

n=0

an also diverges.

(b) If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges.

(c) If
∞∑

n=0

an converges, then
∞∑

n=0

|an| also converges.

solution The correct answer is (b): If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges. Take an = (−1)n 1
n to see that

statements (a) and (c) are not true in general.

3. Lathika argues that
∞∑

n=1

(−1)n
√

n is an alternating series and therefore converges. Is Lathika right?

solution No. Although
∞∑

n=1

(−1)n
√

n is an alternating series, the terms an = √
n do not form a decreasing sequence

that tends to zero. In fact, an = √
n is an increasing sequence that tends to ∞, so

∞∑
n=1

(−1)n
√

n diverges by the Divergence

Test.

4. Suppose that an is positive, decreasing, and tends to 0, and let S =
∞∑

n=1

(−1)n−1an. What can we say about |S − S100|

if a101 = 10−3? Is S larger or smaller than S100?

solution From the text, we know that |S − S100| < a101 = 10−3.Also, the Leibniz test tells us that S2N < S < S2N+1
for any N ≥ 1, so that S100 < S.

Exercises
1. Show that

∞∑
n=0

(−1)n

2n

converges absolutely.

solution The positive series
∞∑

n=0

1

2n
is a geometric series with r = 1

2
. Thus, the positive series converges, and the

given series converges absolutely.

2. Show that the following series converges conditionally:

∞∑
n=1

(−1)n−1 1

n2/3
= 1

12/3
− 1

22/3
+ 1

32/3
− 1

42/3
+ · · ·

solution Let an = 1
n2/3 . Then an forms a decreasing sequence that tends to zero; hence, the series

∞∑
n=1

(−1)n−1 1

n2/3

converges by the Leibniz Test. However, the positive series
∞∑

n=1

1

n2/3
is a divergent p-series, so the original series

converges conditionally.
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In Exercises 3–10, determine whether the series converges absolutely, conditionally, or not at all.

3.
∞∑

n=1

(−1)n−1

n1/3

solution The sequence an = 1
n1/3 is positive, decreasing, and tends to zero; hence, the series

∞∑
n=1

(−1)n−1

n1/3
converges

by the Leibniz Test. However, the positive series
∞∑

n=1

1

n1/3
is a divergent p-series, so the original series converges

conditionally.

4.
∞∑

n=1

(−1)n n4

n3 + 1

solution Because

lim
n→∞

n4

n3 + 1
= ∞,

the general term
(−1)nn4

n3 + 1
of the series does not tend to zero; hence, this series diverges by the Divergence Test.

5.
∞∑

n=0

(−1)n−1

(1.1)n

solution The positive series
∞∑

n=0

(
1

1.1

)n

is a convergent geometric series; thus, the original series converges abso-

lutely.

6.
∞∑

n=1

sin( πn
4 )

n2

solution Because ∣∣∣∣∣ sin
(
πn
4

)
n2

∣∣∣∣∣ =
∣∣sin

(
πn
4

)∣∣
n2

≤ 1

n2

the positive series forms a convergent p-series; thus, the original series converges absolutely.

7.
∞∑

n=2

(−1)n

n ln n

solution Let an = 1
n ln n

. Then an forms a decreasing sequence (note that n and ln n are both increasing functions of

n) that tends to zero; hence, the series
∞∑

n=2

(−1)n

n ln n
converges by the Leibniz Test. However, the positive series

∞∑
n=2

1

n ln n

diverges, so the original series converges conditionally.

8.
∞∑

n=1

(−1)n

1 + 1
n

solution Because

lim
n→∞

1

1 + 1
n

= 1

1 + 0
= 1,

the general term (−1)n

1+ 1
n

of the series does not tend to zero; hence, the series diverges by the Divergent Test.

9.
∞∑

n=2

cos nπ

(ln n)2

solution Since cos nπ alternates between +1 and −1,

∞∑
n=2

cos nπ

(lnn)2
=

∞∑
n=2

(−1)n

(lnn)2
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This is an alternating series whose general term decreases to zero, so it converges. The associated positive series,

∞∑
n=2

1

(ln n)2

is a divergent series, so the original series converges conditionally.

10.
∞∑

n=1

cos n

2n

solution The associated positive series is

∞∑
n=1

|cos n|
2n

≤
∞∑

n=1

1

2n

which is a convergent geometric series. Thus the associated positive series converges, so the original series converges
absolutely.

11. Let S =
∞∑

n=1

(−1)n+1 1

n3
.

(a) Calculate Sn for 1 ≤ n ≤ 10.

(b) Use Eq. (2) to show that 0.9 ≤ S ≤ 0.902.

solution
(a)

S1 = 1 S6 = S5 − 1

63
= 0.899782407

S2 = 1 − 1

23
= 7

8
= 0.875 S7 = S6 + 1

73
= 0.902697859

S3 = S2 + 1

33
= 0.912037037 S8 = S7 − 1

83
= 0.900744734

S4 = S3 − 1

43
= 0.896412037 S9 = S8 + 1

93
= 0.902116476

S5 = S4 + 1

53
= 0.904412037 S10 = S9 − 1

103
= 0.901116476

(b) By Eq. (2),

|S10 − S| ≤ a11 = 1

113
,

so

S10 − 1

113
≤ S ≤ S10 + 1

113
,

or

0.900365161 ≤ S ≤ 0.901867791.

12. Use Eq. (2) to approximate

∞∑
n=1

(−1)n+1

n!

to four decimal places.

solution Let S =
∞∑

n=1

(−1)n+1

n! , so that an = 1

n! . By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)! .

To guarantee accuracy to four decimal places, we must choose N so that

1

(N + 1)! < 5 × 10−5 or (N + 1)! > 20,000.
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Because 7! = 5040 and 8! = 40, 320, the smallest value that satisfies the required inequality is N = 7. Thus,

S ≈ S7 = 1 − 1

2! + 1

3! − 1

4! + 1

5! − 1

6! + 1

7! = 0.632142857.

13. Approximate
∞∑

n=1

(−1)n+1

n4
to three decimal places.

solution Let S =
∞∑

n=1

(−1)n+1

n4
, so that an = 1

n4
. By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)4
.

To guarantee accuracy to three decimal places, we must choose N so that

1

(N + 1)4
< 5 × 10−4 or N >

4√
2000 − 1 ≈ 5.7.

The smallest value that satisfies the required inequality is then N = 6. Thus,

S ≈ S6 = 1 − 1

24
+ 1

34
− 1

44
+ 1

54
− 1

64
= 0.946767824.

14. Let

S =
∞∑

n=1

(−1)n−1 n

n2 + 1

Use a computer algebra system to calculate and plot the partial sums Sn for 1 ≤ n ≤ 100. Observe that the partial sums
zigzag above and below the limit.

solution The partial sums associated with the alternating series
∞∑

n=1

(−1)n−1 n

n2 + 1
are plotted below. As expected,

the partial sums alternate between overestimating and underestimating the sum.

0.1
0 8040 60 10020

0.2

0.3

0.4

0.5

Sn

n

In Exercises 15 and 16, find a value of N such that SN approximates the series with an error of at most 10−5. If you have
a CAS, compute this value of SN .

15.
∞∑

n=1

(−1)n+1

n(n + 2)(n + 3)

solution Let S =
∞∑

n=1

(−1)n+1

n (n + 2) (n + 3)
, so that an = 1

n (n + 2) (n + 3)
. By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)(N + 3)(N + 4)
.

We must choose N so that

1

(N + 1)(N + 3)(N + 4)
≤ 10−5 or (N + 1)(N + 3)(N + 4) ≥ 105.
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For N = 43, the product on the left hand side is 95,128, while for N = 44 the product is 101,520; hence, the smallest
value of N which satisfies the required inequality is N = 44. Thus,

S ≈ S44 =
44∑

n=1

(−1)n+1

n(n + 2)(n + 3)
= 0.0656746.

16.
∞∑

n=1

(−1)n+1 ln n

n!

solution Let S =
∞∑

n=1

(−1)n+1 ln n

n! , so that an = ln n

n! . By Eq. (2),

|SN − S| ≤ aN+1 = ln(N + 1)

(N + 1)! .

To make the error at most 10−5, we must choose N so that

ln(N + 1)

(N + 1)! ≤ 10−5.

For N = 7, the left-hand side of the above inequality is 5.157 × 10−5, while for N = 8, the left-hand side is 6.055 × 10−6;
hence, the smallest value for N which satisfies the required inequality is N = 8. Thus,

S ≈ S8 =
8∑

n=1

(−1)n+1 ln n

n! = −0.209975859.

In Exercises 17–32, determine convergence or divergence by any method.

17.
∞∑

n=0

7−n

solution This is a (positive) geometric series with r = 1

7
< 1, so it converges.

18.
∞∑

n=1

1

n7.5

solution This is a p-series with p = 7.5 > 1, so it converges.

19.
∞∑

n=1

1

5n − 3n

solution Use the Limit Comparison Test with
1

5n
:

L = lim
n→∞

1/(5n − 3n)

1/5n
= lim

n→∞
5n

5n − 3n
= lim

n→∞
1

1 − (3/5)n
= 1

But
∑∞

n=1
1

5n
is a convergent geometric series. Since L = 1, the Limit Comparison Test tells us that the original series

converges as well.

20.
∞∑

n=2

n

n2 − n

solution Apply the Limit Comparison Test and compare with the divergent harmonic series:

L = lim
n→∞

n
n2−n

1
n

= lim
n→∞

n2

n2 − n
= 1.

Because L > 0, we conclude that the series
∞∑

n=2

n

n2 − n
diverges.
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21.
∞∑

n=1

1

3n4 + 12n

solution Use the Limit Comparison Test with
1

3n4
:

L = lim
n→∞

(1/(3n4 + 12n)

1/3n4
= lim

n→∞
3n4

3n4 + 12n
= lim

n→∞
1

1 + 4n−3
= 1

But
∑∞

n=1
1

3n4
= 1

3
∑∞

n=1
1
n4 is a convergent p-series. Since L = 1, the Limit Comparison Test tells us that the original

series converges as well.

22.
∞∑

n=1

(−1)n√
n2 + 1

solution This is an alternating series with an = 1√
n2 + 1

. Because an is a decreasing sequence that converges to

zero, the series
∞∑

n=1

(−1)n√
n2 + 1

converges by the Leibniz Test.

23.
∞∑

n=1

1√
n2 + 1

solution Apply the Limit Comparison Test and compare the series with the divergent harmonic series:

L = lim
n→∞

1√
n2+1
1
n

= lim
n→∞

n√
n2 + 1

= 1.

Because L > 0, we conclude that the series
∞∑

n=1

1√
n2 + 1

diverges.

24.
∞∑

n=0

(−1)nn√
n2 + 1

solution This series diverges, since the general term of the associated positive series tends to 1, not to 0:

lim
n→∞

n√
n2 + 1

= lim
n→∞

√
n2

n2 + 1
= lim

n→∞

√
1

1 + n−2
= 1

25.
∞∑

n=1

3n + (−2)n

5n

solution The series

∞∑
n=1

3n

5n
=

∞∑
n=1

(
3

5

)n

is a convergent geometric series, as is the series

∞∑
n=1

(−1)n 2n

5n
=

∞∑
n=1

(
−2

5

)n

.

Hence,

∞∑
n=1

3n + (−1)n2n

5n
=

∞∑
n=1

(
3

5

)n

+
∞∑

n=1

(
−2

5

)n

also converges.

26.
∞∑

n=1

(−1)n+1

(2n + 1)!

solution This is an alternating series with an = 1

(2n + 1)! . Because an is a decreasing sequence which converges to

zero, the series
∞∑

n=1

(−1)n+1

(2n + 1)! converges by the Leibniz Test.
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27.
∞∑

n=1

(−1)nn2e−n3/3

solution Consider the associated positive series
∞∑

n=1

n2e−n3/3. This series can be seen to converge by the Integral

Test: ∫ ∞
1

x2e−x3/3 dx = lim
R→∞

∫ R

1
x2e−x3/3 dx = − lim

R→∞ e−x3/3∣∣R
1 = e−1/3 + lim

R→∞ e−R3/3 = e−1/3.

The integral converges, so the original series converges absolutely.

28.
∞∑

n=1

ne−n3/3

solution This is a positive series, and by the Comparison Test with the associated positive series in the previous
exercise,

∞∑
n=1

ne−n3/3 ≤
∞∑

n=1

n2e−n3/3

Since the series on the right converges, so does the original series.

29.
∞∑

n=2

(−1)n

n1/2(ln n)2

solution This is an alternating series with an = 1

n1/2(ln n)2
. Because an is a decreasing sequence which converges

to zero, the series
∞∑

n=2

(−1)n

n1/2(ln n)2
converges by the Leibniz Test. (Note that the series converges only conditionally, not

absolutely; the associated positive series is eventually greater than
1

n3/4
, which is a divergent p-series).

30.
∞∑

n=2

1

n(ln n)1/4

solution Use the Integral Test, with the substitution u = ln x:

∫ ∞
2

1

x ln1/4 x
dx = lim

R→∞

∫ R

2

1

x ln1/4 x
dx = lim

R→∞

∫ R

ln 2
u−1/4 du = lim

R→∞
4

3
u3/4∣∣R

ln 2

= −4

3

(
(ln 2)3/4 + lim

R→∞ R3/4
)

The integral diverges, so the original series diverges as well.

31.
∞∑

n=1

ln n

n1.05

solution Choose N so that for n ≥ N we have ln n ≤ n0.01. Then

∞∑
n=N

ln n

n1.05
≤

∞∑
n=N

n0.01

n1.05
=

∞∑
n=N

1

n1.04

This is a convergent p-series, so by the Comparison Test, the original series converges as well.

32.
∞∑

n=2

1

(ln n)2

solution Choose N so that for n ≥ N we have ln n < n0.25 so that ln2 n < n0.5. Then

∞∑
n=N

1

(ln n)2
>

∞∑
n=N

1

n0.5

This is a divergent p-series, so by the Comparison Test, the original series diverges as well.
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33. Show that

S = 1

2
− 1

2
+ 1

3
− 1

3
+ 1

4
− 1

4
+ · · ·

converges by computing the partial sums. Does it converge absolutely?

solution The sequence of partial sums is

S1 = 1

2

S2 = S1 − 1

2
= 0

S3 = S2 + 1

3
= 1

3

S4 = S3 − 1

3
= 0

and, in general,

SN =
⎧⎨
⎩

1

N
, for odd N

0, for even N

Thus, lim
N→∞ SN = 0, and the series converges to 0. The positive series is

1

2
+ 1

2
+ 1

3
+ 1

3
+ 1

4
+ 1

4
+ · · · = 2

∞∑
n=2

1

n
;

which diverges. Therefore, the original series converges conditionally, not absolutely.

34. The Leibniz Test cannot be applied to

1

2
− 1

3
+ 1

22
− 1

32
+ 1

23
− 1

33
+ · · ·

Why not? Show that it converges by another method.

solution The sequence of terms {an} for this alternating series is

1

2
,

1

3
,

1

22
,

1

32
,

1

23
,

1

33
, . . . ,

1

2n
,

1

3n
,

1

2n+1
,

1

3n+1
, . . .

Now,

1

32
= 1

9
<

1

8
= 1

23
.

Moreover, if we assume that

1

3k
<

1

2k+1

for some k, then

1

3k+1
= 1

3
· 1

3k
<

1

3

1

2k+1
<

1

2

1

2k+1
= 1

2k+2
.

Thus, by mathematical induction,

1

3n
<

1

2n+1

for all n ≥ 2. The sequence {an} is therefore not decreasing, and the Leibniz Test does not apply.
We may express the given series as

∞∑
n=1

(
1

2n
− 1

3n

)
.

Because

∞∑
n=1

1

2n
=

∞∑
n=1

(
1

2

)n

and
∞∑

n=1

1

3n
=

∞∑
n=1

(
1

3

)n
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are both convergent geometric series, it follows that this series converges, and

∞∑
n=1

(
1

2n
− 1

3n

)
=

∞∑
n=1

(
1

2

)n

−
∞∑

n=1

(
1

3

)n

=
1
2

1 − 1
2

−
1
3

1 − 1
3

= 1 − 1

2
= 1

2
.

35. Assumptions Matter Show by counterexample that the Leibniz Test does not remain true if the sequence
an tends to zero but is not assumed nonincreasing. Hint: Consider

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n
− 1

2n

)
+ · · ·

solution Let

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n + 1
− 1

2n+1

)
+ · · ·

This is an alternating series with

an =

⎧⎪⎪⎨
⎪⎪⎩

1

k + 1
, n = 2k − 1

1

2k+1
, n = 2k

Note that an → 0 as n → ∞, but the sequence {an} is not decreasing. We will now establish that R diverges.
For sake of contradiction, suppose that R converges. The geometric series

∞∑
n=1

1

2n+1

converges, so the sum of R and this geometric series must also converge; however,

R +
∞∑

n=1

1

2n+1
=

∞∑
n=2

1

n
,

which diverges because the harmonic series diverges. Thus, the series R must diverge.

36. Determine whether the following series converges conditionally:

1 − 1

3
+ 1

2
− 1

5
+ 1

3
− 1

7
+ 1

4
− 1

9
+ 1

5
− 1

11
+ · · ·

solution Although the signs alternate, the terms an are not decreasing, so we cannot apply the Leibniz Test. However,
we may express the series as

∞∑
n=1

(
1

n
− 1

2n + 1

)
=

∞∑
n=1

n + 1

n(2n + 1)
.

Using the Limit Comparison Test and comparing with the harmonic series, we find

L = lim
n→∞

n+1
n(2n+1)

1
n

= lim
n→∞

n + 1

2n + 1
= 1

2
.

Because L > 0, we conclude that the series

1 − 1

3
+ 1

2
− 1

5
+ 1

3
− 1

7
+ 1

4
− 1

9
+ 1

5
− 1

11
+ · · ·

diverges.

37. Prove that if
∑

an converges absolutely, then
∑

a2
n also converges. Then give an example where

∑
an is only

conditionally convergent and
∑

a2
n diverges.

solution Suppose the series
∑

an converges absolutely. Because
∑

|an| converges, we know that

lim
n→∞ |an| = 0.

Therefore, there exists a positive integer N such that |an| < 1 for all n ≥ N . It then follows that for n ≥ N ,

0 ≤ a2
n = |an|2 = |an| · |an| < |an| · 1 = |an|.
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By the Comparison Test we can then conclude that
∑

a2
n also converges.

Consider the series
∞∑

n=1

(−1)n√
n

. This series converges by the Leibniz Test, but the corresponding positive series is a

divergent p-series; that is,
∞∑

n=1

(−1)n√
n

is conditionally convergent. Now,
∞∑

n=1

a2
n is the divergent harmonic series

∞∑
n=1

1

n
.

Thus,
∑

a2
n need not converge if

∑
an is only conditionally convergent.

Further Insights and Challenges
38. Prove the following variant of the Leibniz Test: If {an} is a positive, decreasing sequence with lim

n→∞ an = 0, then the

series

a1 + a2 − 2a3 + a4 + a5 − 2a6 + · · ·
converges. Hint: Show that S3N is increasing and bounded by a1 + a2, and continue as in the proof of the Leibniz Test.

solution Following the hint, we first examine the sequence {S3N }. Now,

S3N+3 = S3(N+1) = S3N + a3N+1 + a3N+2 − 2a3N+3 = S3N + (
a3N+1 − a3N+3

) + (
a3N+2 − a3N+3

) ≥ S3N

because {an} is a decreasing sequence. Moreover,

S3N = a1 + a2 −
N−1∑
k=1

(
2a3k − a3k+1 − a3k+2

) − 2a3N

= a1 + a2 −
N−1∑
k=1

[(
a3k − a3k+1

) + (
a3k − a3k+2

) − 2a3N

] ≤ a1 + a2

again because {an} is a decreasing sequence. Thus, {S3N } is an increasing sequence with an upper bound; hence, {S3N }
converges. Next,

S3N+1 = S3N + a3N+1 and S3N+2 = S3N + a3N+1 + a3N+2.

Given that lim
n→∞ an = 0, it follows that

lim
N→∞ S3N+1 = lim

N→∞ S3N+2 = lim
N→∞ S3N .

Having just established that lim
N→∞ S3N exists, it follows that the sequences {S3N+1} and {S3N+2} converge to the same

limit. Finally, we can conclude that the sequence of partial sums {SN } converges, so the given series converges.

39. Use Exercise 38 to show that the following series converges:

S = 1

ln 2
+ 1

ln 3
− 2

ln 4
+ 1

ln 5
+ 1

ln 6
− 2

ln 7
+ · · ·

solution The given series has the structure of the generic series from Exercise 38 with an = 1
ln(n+1)

. Because an is
a positive, decreasing sequence with lim

n→∞ an = 0, we can conclude from Exercise 38 that the given series converges.

40. Prove the conditional convergence of

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

solution Using Exercise 38 as a template, we first examine the sequence {R4N }. Now,

R4N+4 = R4(N+1) = R4N + 1

4N + 1
+ 1

4N + 2
+ 1

4N + 3
− 3

4N + 4

= RN +
(

1

4N + 1
− 1

4N + 4

)
+
(

1

4N + 2
− 1

4N + 4

)
+
(

1

4N + 3
− 1

4N + 4

)
≥ R4N .

Moreover,

R4N = 1 + 1

2
+ 1

3
−

N−1∑
k=1

(
3

4k
− 1

4k + 1
− 1

4k + 2
− 1

4k + 3

)
− 3

4N
≤ 1 + 1

2
+ 1

3
.
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Thus, {R4N } is an increasing sequence with an upper bound; hence, {R4N } converges. Next,

R4N+1 = R4N + 1

4N + 1
;

R4N+2 = R4N + 1

4N + 1
+ 1

4N + 2
; and

R4N+3 = R4N + 1

4N + 1
+ 1

4N + 2
+ 1

4N + 3
,

so

lim
n→∞ R4N+1 = lim

N→∞ R4N+2 = lim
N→∞ R4N+3 = lim

N→∞ R4N .

Having just established that lim
N→∞ R4N exists, it follows that the sequences {R4N+1}, {R4N+2} and {R4N+3} converge

to the same limit. Finally, we can conclude that the sequence of partial sums {RN } converges, so the series R converges.
Now, consider the positive series

R+ = 1 + 1

2
+ 1

3
+ 3

4
+ 1

5
+ 1

6
+ 1

7
+ 3

8
+ · · ·

Because the terms in this series are greater than or equal to the corresponding terms in the divergent harmonic series, it
follows from the Comparison Test that R+ diverges. Thus, by definition, R converges conditionally.

41. Show that the following series diverges:

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

Hint: Use the result of Exercise 40 to write S as the sum of a convergent series and a divergent series.

solution Let

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

and

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

For sake of contradiction, suppose the series S converges. From Exercise 40, we know that the series R converges. Thus,
the series S − R must converge; however,

S − R = 1

4
+ 1

8
+ 1

12
+ · · · = 1

4

∞∑
k=1

1

k
,

which diverges because the harmonic series diverges. Thus, the series S must diverge.

42. Prove that

∞∑
n=1

(−1)n+1 (ln n)a

n

converges for all exponents a. Hint: Show that f (x) = (ln x)a/x is decreasing for x sufficiently large.

solution This is an alternating series with an = (ln n)a

n . Following the hint, consider the function f (x) = (ln x)a

x
.

Now,

f ′(x) = a(ln x)a−1 − (ln x)a

x2
= (ln x)a−1

x2
(a − ln x),

so f ′(x) < 0 and f is decreasing for x > ea . If a ≤ 0, then it is clear that

lim
x→∞

(ln x)a

x
= 0;

if a > 0, then repeated use of L’Hôpital’s Rule leads to the same conclusion. Let N be any integer greater than ea ; then,

{an} is a decreasing sequence for n ≥ N which converges to zero and the series
∞∑

n=N

(−1)n+1 (ln n)a

n
converges by the

Leibniz Test. Finally, the series
∞∑

n=1

(−1)n+1 (ln n)a

n
also converges.
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43. We say that {bn} is a rearrangement of {an} if {bn} has the same terms as {an} but occurring in a different order. Show

that if {bn} is a rearrangement of {an} and S =
∞∑

n=1

an converges absolutely, then T =
∞∑

n=1

bn also converges absolutely.

(This result does not hold if S is only conditionally convergent.) Hint: Prove that the partial sums
N∑

n=1

|bn| are bounded.

It can be shown further that S = T .

solution Suppose the series S =
∞∑

n=1

an converges absolutely and denote the corresponding positive series by

S+ =
∞∑

n=1

|an|.

Further, let TN =
N∑

n=1

|bn| denote the N th partial sum of the series
∞∑

n=1

|bn|. Because {bn} is a rearrangement of {an}, we

know that

0 ≤ TN ≤
∞∑

n=1

|an| = S+;

that is, the sequence {TN } is bounded. Moreover,

TN+1 =
N+1∑
n=1

|bn| = TN + |bN+1| ≥ TN ;

that is, {TN } is increasing. It follows that {TN } converges, so the series
∞∑

n=1

|bn| converges, which means the series
∞∑

n=1

bn

converges absolutely.

44. Assumptions Matter In 1829, Lejeune Dirichlet pointed out that the great French mathematician Augustin Louis
Cauchy made a mistake in a published paper by improperly assuming the Limit Comparison Test to be valid for nonpositive
series. Here are Dirichlet’s two series:

∞∑
n=1

(−1)n√
n

,

∞∑
n=1

(−1)n√
n

(
1 + (−1)n√

n

)

Explain how they provide a counterexample to the Limit Comparison Test when the series are not assumed to be positive.

solution Let

R =
∞∑

n=1

(−1)n√
n

and S =
∞∑

n=1

(−1)n√
n

(
1 + (−1)n√

n

)

R is an alternating series that converges by the Leibniz Test; however, we cannot apply the Leibniz Test to S because the
absolute value of the terms in S is not decreasing. Because

L = lim
n→∞

(−1)n√
n

(
1 + (−1)n√

n

)
(−1)n√

n

= lim
n→∞

(
1 + (−1)n√

n

)
= 1,

if the Limit Comparison Test were valid for nonpositive series, we would conclude that S converges. However, if we
assume that S converges, then the series S − R would also converge. But

S − R =
∞∑

n=1

(
(−1)n√

n
+ 1

n
− (−1)n√

n

)
=

∞∑
n=1

1

n
,

which is the divergent harmonic series. Thus, S diverges, and the Limit Comparison Test is not valid for nonpositive
series.
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10.5 The Ratio and Root Tests

Preliminary Questions

1. In the Ratio Test, is ρ equal to lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣?
solution In the Ratio Test ρ is the limit lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣.
2. Is the Ratio Test conclusive for

∞∑
n=1

1

2n
? Is it conclusive for

∞∑
n=1

1

n
?

solution The general term of
∞∑

n=1

1

2n
is an = 1

2n
; thus,

∣∣∣∣an+1

an

∣∣∣∣ = 1

2n+1
· 2n

1
= 1

2
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
< 1.

Consequently, the Ratio Test guarantees that the series
∞∑

n=1

1

2n
converges.

The general term of
∞∑

n=1

1

n
is an = 1

n
; thus,

∣∣∣∣an+1

an

∣∣∣∣ = 1

n + 1
· n

1
= n

n + 1
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n

n + 1
= 1.

The Ratio Test is therefore inconclusive for the series
∞∑

n=1

1

n
.

3. Can the Ratio Test be used to show convergence if the series is only conditionally convergent?

solution No. The Ratio Test can only establish absolute convergence and divergence, not conditional convergence.

Exercises
In Exercises 1–20, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

1.
∞∑

n=1

1

5n

solution With an = 1
5n ,∣∣∣∣an+1

an

∣∣∣∣ = 1

5n+1
· 5n

1
= 1

5
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
< 1.

Therefore, the series
∞∑

n=1

1

5n
converges by the Ratio Test.

2.
∞∑

n=1

(−1)n−1n

5n

solution With an = (−1)n−1n
5n ,∣∣∣∣an+1

an

∣∣∣∣ = n + 1

5n+1
· 5n

n
= n + 1

5n
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
< 1.

Therefore, the series
∞∑

n=1

(−1)n−1n

5n
converges by the Ratio Test.
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3.
∞∑

n=1

1

nn

solution With an = 1
nn ,

∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1)n+1
· nn

1
= 1

n + 1

(
n

n + 1

)n

= 1

n + 1

(
1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1

e
= 0 < 1.

Therefore, the series
∞∑

n=1

1

nn
converges by the Ratio Test.

4.
∞∑

n=0

3n + 2

5n3 + 1

solution With an = 3n+2
5n3+1

,

∣∣∣∣an+1

an

∣∣∣∣ = 3(n + 1) + 2

5(n + 1)3 + 1
· 5n3 + 1

3n + 2
= 3n + 5

3n + 2
· 5n3 + 1

5(n + 1)3 + 1
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 1 = 1.

Therefore, for the series
∞∑

n=0

3n + 2

5n3 + 1
, the Ratio Test is inconclusive.

We can show that this series converges by using the Limit Comparison Test and comparing with the convergent p-series
∞∑

n=1

1

n2
.

5.
∞∑

n=1

n

n2 + 1

solution With an = n
n2+1

,

∣∣∣∣an+1

an

∣∣∣∣ = n + 1

(n + 1)2 + 1
· n2 + 1

n
= n + 1

n
· n2 + 1

n2 + 2n + 2
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 1 = 1.

Therefore, for the series
∞∑

n=1

n

n2 + 1
, the Ratio Test is inconclusive.

We can show that this series diverges by using the Limit Comparison Test and comparing with the divergent harmonic
series.

6.
∞∑

n=1

2n

n

solution With an = 2n

n ,

∣∣∣∣an+1

an

∣∣∣∣ = 2n+1

n + 1
· n

2n
= 2n

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 > 1.

Therefore, the series
∞∑

n=1

2n

n
diverges by the Ratio Test.



March 31, 2011

1286 C H A P T E R 10 INFINITE SERIES

7.
∞∑

n=1

2n

n100

solution With an = 2n

n100 ,

∣∣∣∣an+1

an

∣∣∣∣ = 2n+1

(n + 1)100
· n100

2n
= 2

(
n

n + 1

)100
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 · 1100 = 2 > 1.

Therefore, the series
∞∑

n=1

2n

n100
diverges by the Ratio Test.

8.
∞∑

n=1

n3

3n2

solution With an = n3

3n2 ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)3

3(n+1)2 · 3n2

n3
=
(

n + 1

n

)3
· 1

32n+1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 13 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

n3

3n2 converges by the Ratio Test.

9.
∞∑

n=1

10n

2n2

solution With an = 10n

2n2 ,

∣∣∣∣an+1

an

∣∣∣∣ = 10n+1

2(n+1)2 · 2n2

10n
= 10 · 1

22n+1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 10 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

10n

2n2 converges by the Ratio Test.

10.
∞∑

n=1

en

n!

solution With an = en

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = en+1

(n + 1)! · n!
en

= e

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 < 1.

Therefore, the series
∞∑

n=1

en

n! converges by the Ratio Test.

11.
∞∑

n=1

en

nn

solution With an = en

nn ,

∣∣∣∣an+1

an

∣∣∣∣ = en+1

(n + 1)n+1
· nn

en
= e

n + 1

(
n

n + 1

)n

= e

n + 1

(
1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1

e
= 0 < 1.

Therefore, the series
∞∑

n=1

en

nn
converges by the Ratio Test.
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12.
∞∑

n=1

n40

n!

solution With an = n40

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)40

(n + 1)! · n!
n40

= 1

n + 1

(
n + 1

n

)40
= 1

n + 1

(
1 + 1

n

)40
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1 = 0 < 1.

Therefore, the series
∞∑

n=1

n40

n! converges by the Ratio Test.

13.
∞∑

n=0

n!
6n

solution With an = n!
6n ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
6n+1

· 6n

n! = n + 1

6
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞ > 1.

Therefore, the series
∞∑

n=0

n!
6n

diverges by the Ratio Test.

14.
∞∑

n=1

n!
n9

solution With an = n!
n9 ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
(n + 1)9

· n9

n! = n9

(n + 1)8
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞ > 1.

Therefore, the series
∞∑

n=1

n!
n9

diverges by the Ratio Test.

15.
∞∑

n=2

1

n ln n

solution With an = 1
n ln n

,

∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1) ln(n + 1)
· n ln n

1
= n

n + 1

ln n

ln(n + 1)
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · lim
n→∞

ln n

ln(n + 1)
.

Now,

lim
n→∞

ln n

ln(n + 1)
= lim

x→∞
ln x

ln(x + 1)
= lim

x→∞
1/(x + 1)

1/x
= lim

x→∞
x

x + 1
= 1.

Thus, ρ = 1, and the Ratio Test is inconclusive for the series
∞∑

n=2

1

n ln n
.

Using the Integral Test, we can show that the series
∞∑

n=2

1

n ln n
diverges.
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16.
∞∑

n=1

1

(2n)!

solution With an = 1
(2n)! ,∣∣∣∣an+1

an

∣∣∣∣ = 1

(2n + 2)! · (2n)!
1

= 1

(2n + 2)(2n + 1)
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 < 1.

Therefore, the series
∞∑

n=1

1

(2n)! converges by the Ratio Test.

17.
∞∑

n=1

n2

(2n + 1)!

solution With an = n2

(2n+1)! ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)2

(2n + 3)! · (2n + 1)!
n2

=
(

n + 1

n

)2 1

(2n + 3)(2n + 2)
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 12 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

n2

(2n + 1)! converges by the Ratio Test.

18.
∞∑

n=1

(n!)3

(3n)!

solution With an = (n!)3

(3n)! ,

∣∣∣∣an+1

an

∣∣∣∣ = ((n + 1)!)3

(3(n + 1))! · (3n)!
(n!)3

= (n + 1)3

(3n + 3)(3n + 2)(3n + 1)
= n3 + 3n2 + 3n + 1

27n3 + 54n2 + 33n + 6

= 1 + 3n−1 + 3n−2 + 1n−3

27 + 54n−1 + 33n−2 + 6n−3

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

27
< 1

Therefore, the series
∞∑

n=1

(n!)3

(3n)! converges by the Ratio Test.

19.
∞∑

n=2

1

2n + 1

solution With an = 1

2n + 1
,

∣∣∣∣an+1

an

∣∣∣∣ = 1

2n+1 + 1
· 2n + 1

1
= 1 + 2−n

2 + 2−n

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
< 1

Therefore, the series
∞∑

n=2

1

2n + 1
converges by the Ratio Test.
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20.
∞∑

n=2

1

ln n

solution With an = 1

ln n
,

∣∣∣∣an+1

an

∣∣∣∣ = 1

ln n
· ln(n + 1)

1
= ln(n + 1)

ln n

and (using L’Hôpital’s rule)

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
x→∞

d
dx

ln(x + 1)

d
dx

ln x
= lim

x→∞
x

x + 1
= 1

Therefore, the Ratio Test is inconclusive for
∞∑

n=2

1

ln n
. This series can be shown to diverge using the Comparison Test

with the harmonic series since ln n < n for n ≥ 2.

21. Show that
∞∑

n=1

nk 3−n converges for all exponents k.

solution With an = nk3−n, ∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)k3−(n+1)

nk3−n
= 1

3

(
1 + 1

n

)k

,

and, for all k,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

3
· 1 = 1

3
< 1.

Therefore, the series
∞∑

n=1

nk 3−n converges for all exponents k by the Ratio Test.

22. Show that
∞∑

n=1

n2xn converges if |x| < 1.

solution With an = n2xn,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)2|x|n+1

n2|x|n =
(

1 + 1

n

)2
|x| and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · |x| = |x|.

Therefore, by the Ratio Test, the series
∞∑

n=1

n2xn converges provided |x| < 1.

23. Show that
∞∑

n=1

2nxn converges if |x| < 1
2 .

solution With an = 2nxn,∣∣∣∣an+1

an

∣∣∣∣ = 2n+1|x|n+1

2n|x|n = 2|x| and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2|x|.

Therefore, ρ < 1 and the series
∞∑

n=1

2nxn converges by the Ratio Test provided |x| < 1
2 .

24. Show that
∞∑

n=1

rn

n! converges for all r .

solution With an = rn

n! ,∣∣∣∣an+1

an

∣∣∣∣ = |r|n+1

(n + 1)! · n!
|r|n = |r|

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · |r| = 0 < 1.

Therefore, the series
∞∑

n=1

rn

n! converges by the Ratio Test for all r .
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25. Show that
∞∑

n=1

rn

n
converges if |r| < 1.

solution With an = rn

n ,∣∣∣∣an+1

an

∣∣∣∣ = |r|n+1

n + 1
· n

|r|n = |r| n

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · |r| = |r|.

Therefore, by the Ratio Test, the series
∞∑

n=1

rn

n
converges provided |r| < 1.

26. Is there any value of k such that
∞∑

n=1

2n

nk
converges?

solution With an = 2n

nk ,

∣∣∣∣an+1

an

∣∣∣∣ = 2n+1

(n + 1)k
· nk

2n
= 2

(
n

n + 1

)k

,

and, for all k,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 · 1k = 2 > 1.

Therefore, by the Ratio Test, there is no value for k such that the series
∞∑

n=1

2n

nk
converges.

27. Show that
∞∑

n=1

n!
nn

converges. Hint: Use lim
n→∞

(
1 + 1

n

)n

= e.

solution With an = n!
nn , ∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
(n + 1)n+1

· nn

n! =
(

n

n + 1

)n

=
(

1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

e
< 1.

Therefore, the series
∞∑

n=1

n!
nn

converges by the Ratio Test.

In Exercises 28–33, assume that |an+1/an| converges to ρ = 1
3 . What can you say about the convergence of the given

series?

28.
∞∑

n=1

nan

solution Let bn = nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

n + 1

n

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 1

3
= 1

3
< 1.

Therefore, the series
∞∑

n=1

nan converges by the Ratio Test.

29.
∞∑

n=1

n3an

solution Let bn = n3an. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

(
n + 1

n

)3 ∣∣∣∣an+1

an

∣∣∣∣ = 13 · 1

3
= 1

3
< 1.

Therefore, the series
∞∑

n=1

n3an converges by the Ratio Test.
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30.
∞∑

n=1

2nan

solution Let bn = 2nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

2n+1

2n

∣∣∣∣an+1

an

∣∣∣∣ = 2 · 1

3
= 2

3
< 1.

Therefore, the series
∞∑

n=1

2nan converges by the Ratio Test.

31.
∞∑

n=1

3nan

solution Let bn = 3nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

3n+1

3n

∣∣∣∣an+1

an

∣∣∣∣ = 3 · 1

3
= 1.

Therefore, the Ratio Test is inconclusive for the series
∞∑

n=1

3nan.

32.
∞∑

n=1

4nan

solution Let bn = 4nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

4n+1

4n

∣∣∣∣an+1

an

∣∣∣∣ = 4 · 1

3
= 4

3
> 1.

Therefore, the series
∞∑

n=1

4nan diverges by the Ratio Test.

33.
∞∑

n=1

a2
n

solution Let bn = a2
n. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣2 =
(

1

3

)2
= 1

9
< 1.

Therefore, the series
∞∑

n=1

a2
n converges by the Ratio Test.

34. Assume that
∣∣an+1/an

∣∣ converges to ρ = 4. Does
∑∞

n=1 a−1
n converge (assume that an 	= 0 for all n)?

solution Let bn = a−1
n . Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = 1

limn→∞
∣∣∣ an+1

an

∣∣∣ = 1

4
< 1.

Therefore, the series
∞∑

n=1

a−1
n converges by the Ratio Test.

35. Is the Ratio Test conclusive for the p-series
∞∑

n=1

1

np
?

solution With an = 1
np ,∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1)p
· np

1
=
(

n

n + 1

)p

and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1p = 1.

Therefore, the Ratio Test is inconclusive for the p-series
∞∑

n=1

1

np
.
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In Exercises 36–41, use the Root Test to determine convergence or divergence (or state that the test is inconclusive).

36.
∞∑

n=0

1

10n

solution With an = 1
10n ,

n
√

an = n

√
1

10n
= 1

10
and lim

n→∞
n
√

an = 1

10
< 1.

Therefore, the series
∞∑

n=0

1

10n
converges by the Root Test.

37.
∞∑

n=1

1

nn

solution With an = 1
nn ,

n
√

an = n

√
1

nn
= 1

n
and lim

n→∞
n
√

an = 0 < 1.

Therefore, the series
∞∑

n=1

1

nn
converges by the Root Test.

38.
∞∑

k=0

(
k

k + 10

)k

solution With ak =
(

k
k+10

)k
,

k
√

ak = k

√(
k

k + 10

)k

= k

k + 10
and lim

k→∞
k
√

ak = 1.

Therefore, the Root Test is inconclusive for the series
∞∑

k=0

(
k

k + 10

)k

. Because

lim
k→∞ ak = lim

k→∞

(
1 + 10

k

)−k

= lim
k→∞

[(
1 + 10

k

)k/10
]−10

= e−10 	= 0,

this series diverges by the Divergence Test.

39.
∞∑

k=0

(
k

3k + 1

)k

solution With ak =
(

k
3k+1

)k
,

k
√

ak = k

√(
k

3k + 1

)k

= k

3k + 1
and lim

k→∞
k
√

ak = 1

3
< 1.

Therefore, the series
∞∑

k=0

(
k

3k + 1

)k

converges by the Root Test.

40.
∞∑

n=1

(
1 + 1

n

)−n

solution With ak = (
1 + 1

n

)−n,

n
√

an = n

√(
1 + 1

n

)−n

=
(

1 + 1

n

)−1
and lim

n→∞
n
√

an = 1−1 = 1.

Therefore, the Root Test is inconclusive for the series
∞∑

n=1

(
1 + 1

n

)−n

.
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Because

lim
n→∞ an = lim

n→∞

(
1 + 1

n

)−n

= lim
n→∞

[(
1 + 1

n

)n]−1

= e−1 	= 0,

this series diverges by the Divergence Test.

41.
∞∑

n=4

(
1 + 1

n

)−n2

solution With ak = (
1 + 1

n

)−n2
,

n
√

an = n

√(
1 + 1

n

)−n2

=
(

1 + 1

n

)−n

and lim
n→∞

n
√

an = e−1 < 1.

Therefore, the series
∞∑

n=4

(
1 + 1

n

)−n2

converges by the Root Test.

42. Prove that
∞∑

n=1

2n2

n! diverges. Hint: Use 2n2 = (2n)n and n! ≤ nn.

solution Because n! ≤ nn,

2n2

n! ≥ 2n2

nn
.

Now, let an = 2n2

nn . Then

n
√

an = n

√
2n2

nn
= 2n

n
,

and

lim
n→∞

n
√

an = lim
n→∞

2n

n
= lim

x→∞
2x

x
= lim

x→∞
2x ln 2

1
= ∞ > 1.

Therefore, the series
∞∑

n=1

2n2

nn
diverges by the Root Test. By the Comparison Test, we can then conclude that the series

∞∑
n=1

2n2

n! also diverges.

In Exercises 43–56, determine convergence or divergence using any method covered in the text so far.

43.
∞∑

n=1

2n + 4n

7n

solution Because the series

∞∑
n=1

2n

7n
=

∞∑
n=1

(
2

7

)n

and
∞∑

n=1

4n

7n
=

∞∑
n=1

(
4

7

)n

are both convergent geometric series, it follows that

∞∑
n=1

2n + 4n

7n
=

∞∑
n=1

(
2

7

)n

+
∞∑

n=1

(
4

7

)n

also converges.

44.
∞∑

n=1

n3

n!
solution The presence of the factorial suggests applying the Ratio Test. With an = n3

n! ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)3

(n + 1)! · n!
n3

= (n + 1)2

n3
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 < 1.

Therefore, the series
∞∑

n=1

n3

n! converges by the Ratio Test.
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45.
∞∑

n=1

n3

5n

solution The presence of the exponential term suggests applying the Ratio Test. With an = n3

5n ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)3

5n+1
· 5n

n3
= 1

5

(
1 + 1

n

)3
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
· 13 = 1

5
< 1.

Therefore, the series
∞∑

n=1

n3

5n
converges by the Ratio Test.

46.
∞∑

n=2

1

n(ln n)3

solution The general term in this series suggests applying the Integral Test. Let f (x) = 1
x(ln x)3 . This function is

continuous, positive and decreasing for x ≥ 2, so the Integral Test does apply. Now∫ ∞
2

dx

x(ln x)3
= lim

R→∞

∫ R

2

dx

x(ln x)3
= lim

R→∞

∫ ln R

ln 2

du

u3
= −1

2
lim

R→∞

(
1

(ln R)2
− 1

(ln 2)2

)
= 1

2(ln 2)2
.

The integral converges; hence, the series
∞∑

n=2

1

n(ln n)3
also converges.

47.
∞∑

n=2

1√
n3 − n2

solution This series is similar to a p-series; because

1√
n3 − n2

≈ 1√
n3

= 1

n3/2

for large n, we will apply the Limit Comparison Test comparing with the p-series with p = 3
2 . Now,

L = lim
n→∞

1√
n3−n2

1
n3/2

= lim
n→∞

√
n3

n3 − n2
= 1.

The p-series with p = 3
2 converges and L exists; therefore, the series

∞∑
n=2

1√
n3 − n2

also converges.

48.
∞∑

n=1

n2 + 4n

3n4 + 9

solution This series is similar to a p-series; because

n2 + 4n

3n4 + 9
≈ n2

√
3n4

= 1

3n2

for large n, we will apply the Limit Comparison Test comparing with the p-series with p = 2. Now,

L = lim
n→∞

n2+4n
3n4+9

1
n2

= lim
n→∞

n4 + 4n3

3n4 + 9
= 1

3
.

The p-series with p = 2 converges and L exists; therefore, the series
∞∑

n=1

n2 + 4n

3n4 + 9
also converges.

49.
∞∑

n=1

n−0.8

solution

∞∑
n=1

n−0.8 =
∞∑

n=1

1

n0.8

so that this is a divergent p-series.
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50.
∞∑

n=1

(0.8)−nn−0.8

solution
∞∑

n=1

(0.8)−nn−0.8 =
∞∑

n=1

(0.8−1)nn−0.8 =
∞∑

n=1

1.25n

n0.8

With an = 1.25n

n0.8 we have ∣∣∣∣an+1

an

∣∣∣∣ = 1.25n+1

(n + 1)0.8
· n0.8

1.25n
= 1.25

(
n

n + 1

)0.8

so that

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.25 > 1

Thus the original series diverges, by the Ratio Test.

51.
∞∑

n=1

4−2n+1

solution Observe
∞∑

n=1

4−2n+1 =
∞∑

n=1

4 · (4−2)n =
∞∑

n=1

4

(
1

16

)n

is a geometric series with r = 1
16 ; therefore, this series converges.

52.
∞∑

n=1

(−1)n−1
√

n

solution This is an alternating series with an = 1√
n

. Because an forms a decreasing sequence which converges to

zero, the series
∞∑

n=1

(−1)n−1
√

n
converges by the Leibniz Test.

53.
∞∑

n=1

sin
1

n2

solution Here, we will apply the Limit Comparison Test, comparing with the p-series with p = 2. Now,

L = lim
n→∞

sin 1
n2

1
n2

= lim
u→0

sin u

u
= 1,

where u = 1
n2 . The p-series with p = 2 converges and L exists; therefore, the series

∞∑
n=1

sin
1

n2
also converges.

54.
∞∑

n=1

(−1)n cos
1

n

solution Because

lim
n→∞ cos

1

n
= cos 0 = 1 	= 0,

the general term in the series
∞∑

n=1

(−1)n cos
1

n
does not tend toward zero; therefore, the series diverges by the Divergence

Test.

55.
∞∑

n=1

(−2)n√
n

solution Because

lim
n→∞

2n

√
n

= lim
x→∞

2x

√
x

= lim
x→∞

2x ln 2
1

2
√

x

= lim
x→∞ 2x+1√

x ln 2 = ∞ 	= 0,

the general term in the series
∞∑

n=1

(−2)n√
n

does not tend toward zero; therefore, the series diverges by the Divergence Test.
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56.
∞∑

n=1

(
n

n + 12

)n

solution Because the general term has the form of a function of n raised to the nth power, we might be tempted to
use the Root Test; however, the Root Test is inconclusive for this series. Instead, note

lim
n→∞ an = lim

n→∞

(
1 + 12

n

)−n

= lim
n→∞

[(
1 + 12

n

)n/12
]−12

= e−12 	= 0.

Therefore, the series diverges by the Divergence Test.

Further Insights and Challenges

57. Proof of the Root Test Let S =
∞∑

n=0

an be a positive series, and assume that L = lim
n→∞

n
√

an exists.

(a) Show that S converges if L < 1. Hint: Choose R with L < R < 1 and show that an ≤ Rn for n sufficiently large.
Then compare with the geometric series

∑
Rn.

(b) Show that S diverges if L > 1.

solution Suppose lim
n→∞

n
√

an = L exists.

(a) If L < 1, let ε = 1 − L

2
. By the definition of a limit, there is a positive integer N such that

−ε ≤ n
√

an − L ≤ ε

for n ≥ N . From this, we conclude that

0 ≤ n
√

an ≤ L + ε

for n ≥ N . Now, let R = L + ε. Then

R = L + 1 − L

2
= L + 1

2
<

1 + 1

2
= 1,

and

0 ≤ n
√

an ≤ R or 0 ≤ an ≤ Rn

for n ≥ N . Because 0 ≤ R < 1, the series
∞∑

n=N

Rn is a convergent geometric series, so the series
∞∑

n=N

an converges by

the Comparison Test. Therefore, the series
∞∑

n=0

an also converges.

(b) If L > 1, let ε = L − 1

2
. By the definition of a limit, there is a positive integer N such that

−ε ≤ n
√

an − L ≤ ε

for n ≥ N . From this, we conclude that

L − ε ≤ n
√

an

for n ≥ N . Now, let R = L − ε. Then

R = L − L − 1

2
= L + 1

2
>

1 + 1

2
= 1,

and

R ≤ n
√

an or Rn ≤ an

for n ≥ N . Because R > 1, the series
∞∑

n=N

Rn is a divergent geometric series, so the series
∞∑

n=N

an diverges by the

Comparison Test. Therefore, the series
∞∑

n=0

an also diverges.
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58. Show that the Ratio Test does not apply, but verify convergence using the Comparison Test for the series

1

2
+ 1

32
+ 1

23
+ 1

34
+ 1

25 + · · ·

solution The general term of the series is:

an =

⎧⎪⎪⎨
⎪⎪⎩

1

2n
n odd

1

3n
n even

First use the Ratio Test. If n is even,

an+1

an
=

1
2n+1

1
3n

= 3n

2n+1
= 1

2
·
(

3

2

)n

whereas, if n is odd,

an+1

an
=

1
3n+1

1
2n

= 2n

3n+1
= 1

3
·
(

2

3

)n

Since lim
n→∞

1

3
·
(

2

3

)n

= 0 and lim
n→∞

1

2
·
(

3

2

)n

= ∞, the sequence
an+1

an
does not converge, and the Ratio Test is incon-

clusive.

However, we have 0 ≤ an ≤ 1

2n
for all n, so the series converges by comparison with the convergent geometric series

∞∑
n=1

1

2n

59. Let S =
∞∑

n=1

cnn!
nn

, where c is a constant.

(a) Prove that S converges absolutely if |c| < e and diverges if |c| > e.

(b) It is known that lim
n→∞

enn!
nn+1/2

= √
2π . Verify this numerically.

(c) Use the Limit Comparison Test to prove that S diverges for c = e.

solution

(a) With an = cnn!
nn ,

∣∣∣∣an+1

an

∣∣∣∣ = |c|n+1(n + 1)!
(n + 1)n+1

· nn

|c|nn! = |c|
(

n

n + 1

)n

= |c|
(

1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |c|e−1.

Thus, by the Ratio Test, the series
∞∑

n=1

cnn!
nn

converges when |c|e−1 < 1, or when |c| < e. The series diverges when

|c| > e.

(b) The table below lists the value of enn!
nn+1/2 for several increasing values of n. Since

√
2π = 2.506628275, the numerical

evidence verifies that

lim
n→∞

enn!
nn+1/2

= √
2π.

n 100 1000 10000 100000

enn!
nn+1/2 2.508717995 2.506837169 2.506649163 2.506630363
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(c) With c = e, the series S becomes
∞∑

n=1

enn!
nn

. Using the result from part (b),

L = lim
n→∞

enn!
nn√
n

= lim
n→∞

enn!
nn+1/2

= √
2π.

Because the series
∞∑

n=1

√
n diverges by the Divergence Test and L > 0, we conclude that

∞∑
n=1

enn!
nn

diverges by the Limit

Comparison Test.

10.6 Power Series

Preliminary Questions
1. Suppose that

∑
anxn converges for x = 5. Must it also converge for x = 4? What about x = −3?

solution The power series
∑

anxn is centered at x = 0. Because the series converges for x = 5, the radius of
convergence must be at least 5 and the series converges absolutely at least for the interval |x| < 5. Both x = 4 and
x = −3 are inside this interval, so the series converges for x = 4 and for x = −3.

2. Suppose that
∑

an(x − 6)n converges for x = 10. At which of the points (a)–(d) must it also converge?

(a) x = 8 (b) x = 11 (c) x = 3 (d) x = 0

solution The given power series is centered at x = 6. Because the series converges for x = 10, the radius of
convergence must be at least |10 − 6| = 4 and the series converges absolutely at least for the interval |x − 6| < 4, or
2 < x < 10.

(a) x = 8 is inside the interval 2 < x < 10, so the series converges for x = 8.

(b) x = 11 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 11.

(c) x = 3 is inside the interval 2 < x < 10, so the series converges for x = 2.

(d) x = 0 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 0.

3. What is the radius of convergence of F(3x) if F(x) is a power series with radius of convergence R = 12?

solution If the power series F(x) has radius of convergence R = 12, then the power series F(3x) has radius of

convergence R = 12
3 = 4.

4. The power series F(x) =
∞∑

n=1

nxn has radius of convergence R = 1. What is the power series expansion of F ′(x)

and what is its radius of convergence?

solution We obtain the power series expansion for F ′(x) by differentiating the power series expansion for F(x)

term-by-term. Thus,

F ′(x) =
∞∑

n=1

n2xn−1.

The radius of convergence for this series is R = 1, the same as the radius of convergence for the series expansion for
F(x).

Exercises

1. Use the Ratio Test to determine the radius of convergence R of
∞∑

n=0

xn

2n
. Does it converge at the endpoints x = ±R?

solution With an = xn

2n ,∣∣∣∣an+1

an

∣∣∣∣ = |x|n+1

2n+1
· 2n

|x|n = |x|
2

and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x|
2

.

By the Ratio Test, the series converges when ρ = |x|
2 < 1, or |x| < 2, and diverges when ρ = |x|

2 > 1, or |x| > 2.

The radius of convergence is therefore R = 2. For x = −2, the left endpoint, the series becomes
∑∞

n=0(−1)n, which is

divergent. For x = 2, the right endpoint, the series becomes
∑∞

n=0 1, which is also divergent. Thus the series diverges at
both endpoints.
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2. Use the Ratio Test to show that
∞∑

n=1

xn

√
n2n

has radius of convergence R = 2. Then determine whether it converges

at the endpoints R = ±2.

solution With an = xn√
n2n ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|n+1
√

n + 1 · 2n+1
·
√

n · 2n

|x|n = |x|
2

·
√

n

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x|
2

· 1 = |x|
2

.

By the Ratio Test, the series converges when ρ = |x|
2 < 1, or |x| < 2, and diverges when ρ = |x|

2 > 1, or |x| > 2. The
radius of convergence is therefore R = 2.

For the endpoint x = 2, the series becomes

∞∑
n=1

2n

√
n · 2n

=
∞∑

n=1

1√
n

,

which is a divergent p-series. For the endpoint x = −2, the series becomes

∞∑
n=1

(−2)n√
n · 2n

=
∞∑

n=1

(−1)n√
n

.

This alternating series converges by the Leibniz Test, but its associated positive series is a divergent p-series. Thus, the
series for x = −2 is conditionally convergent.

3. Show that the power series (a)–(c) have the same radius of convergence. Then show that (a) diverges at both endpoints,
(b) converges at one endpoint but diverges at the other, and (c) converges at both endpoints.

(a)
∞∑

n=1

xn

3n
(b)

∞∑
n=1

xn

n3n
(c)

∞∑
n=1

xn

n23n

solution

(a) With an = xn

3n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
n+1

3n+1
· 3n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣x
3

∣∣∣ =
∣∣∣x
3

∣∣∣
Then ρ < 1 if |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

3n
=

∞∑
n=1

1,

which diverges by the Divergence Test. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

3n
=

∞∑
n=1

(−1)n,

which also diverges by the Divergence Test.

(b) With an = xn

n3n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)3n+1
· n3n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x3
(

n

n + 1

)∣∣∣∣ =
∣∣∣x
3

∣∣∣ .
Then ρ < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

n3n
=

∞∑
n=1

1

n
,

which is the divergent harmonic series. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

n3n
=

∞∑
n=1

(−1)n

n
,

which converges by the Leibniz Test.
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(c) With an = xn

n23n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)23n+1
· n23n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x3
(

n

n + 1

)2
∣∣∣∣∣ =

∣∣∣x
3

∣∣∣
Then ρ < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

n23n
=

∞∑
n=1

1

n2
,

which is a convergent p-series. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

n23n
=

∞∑
n=1

(−1)n

n2
,

which converges by the Leibniz Test.

4. Repeat Exercise 3 for the following series:

(a)
∞∑

n=1

(x − 5)n

9n
(b)

∞∑
n=1

(x − 5)n

n9n
(c)

∞∑
n=1

(x − 5)n

n29n

solution

(a) With an = (x−5)n

9n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x − 5)n+1

9n+1
· 9n

(x − 5)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x − 5

9

∣∣∣∣ =
∣∣∣∣x − 5

9

∣∣∣∣
Then ρ < 1 when |x − 5| < 9, so that the radius of convergence is R = 9. Because the series is centered at x = 5, the
series converges absolutely on the interval |x − 5| < 9, or −4 < x < 14. For the endpoint x = 14, the series becomes

∞∑
n=1

(14 − 5)n

9n
=

∞∑
n=1

1,

which diverges by the Divergence Test. For the endpoint x = −4, the series becomes

∞∑
n=1

(−4 − 5)n

9n
=

∞∑
n=1

(−1)n,

which also diverges by the Divergence Test.

(b) With an = (x−5)n

n9n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x − 5)n+1

(n + 1)9n+1
· n9n

(x − 5)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x − 5

9

n

n + 1

∣∣∣∣ =
∣∣∣∣x − 5

9

∣∣∣∣ .
Then ρ < 1 when |x − 5| < 9, so that the radius of convergence is R = 9. Because the series is centered at x = 5, the
series converges absolutely on the interval |x − 5| < 9, or −4 < x < 14. For the endpoint x = 14, the series becomes

∞∑
n=1

(14 − 5)n

n9n
=

∞∑
n=1

1

n
,

which is the divergent harmonic series. For the endpoint x = −4, the series becomes

∞∑
n=1

(−4 − 5)n

n9n
=

∞∑
n=1

(−1)n

n
,

which converges by the Leibniz Test.

(c) With an = (x−5)n

n29n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x − 5)n+1

(n + 1)29n+1
· n29n

(x − 5)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x − 5

9

(
n

n + 1

)2
∣∣∣∣∣ =

∣∣∣∣x − 5

9

∣∣∣∣ .



March 31, 2011

S E C T I O N 10.6 Power Series 1301

Then ρ < 1 when |x − 5| < 9, so that the radius of convergence is R = 9. Because the series is centered at x = 5, the
series converges absolutely on the interval |x − 5| < 9, or −4 < x < 14. For the endpoint x = 14, the series becomes

∞∑
n=1

(14 − 5)n

n29n
=

∞∑
n=1

1

n2
,

which is a convergent p-series. For the endpoint x = −4, the series becomes

∞∑
n=1

(−4 − 5)n

n29n
=

∞∑
n=1

(−1)n

n2
,

which converges by the Leibniz Test.

5. Show that
∞∑

n=0

nnxn diverges for all x 	= 0.

solution With an = nnxn, and assuming x 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x
(

1 + 1

n

)n

(n + 1)

∣∣∣∣ = ∞

ρ < 1 only if x = 0, so that the radius of convergence is therefore R = 0. In other words, the power series converges
only for x = 0.

6. For which values of x does
∞∑

n=0

n!xn converge?

solution With an = n!xn, and assuming x 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)!xn+1

n!xn

∣∣∣∣∣ = lim
n→∞ |(n + 1)x| = ∞

ρ < 1 only if x = 0, so that the radius of convergence is R = 0. In other words, the power series converges only for
x = 0.

7. Use the Ratio Test to show that
∞∑

n=0

x2n

3n
has radius of convergence R = √

3.

solution With an = x2n

3n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2(n+1)

3n+1
· 3n

x2n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

3

∣∣∣∣∣ =
∣∣∣∣∣x

2

3

∣∣∣∣∣
Then ρ < 1 when |x2| < 3, or x = √

3, so the radius of convergence is R = √
3.

8. Show that
∞∑

n=0

x3n+1

64n
has radius of convergence R = 4.

solution With an = x3n+1

64n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
3(n+1)+1

64n+1
· 64n

x3n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
3

64

∣∣∣∣∣ =
∣∣∣∣∣x

3

64

∣∣∣∣∣
Then ρ < 1 when |x|3 < 64 or |x| = 4, so the radius of convergence is R = 4.

In Exercises 9–34, find the interval of convergence.

9.
∞∑

n=0

nxn

solution With an = nxn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)xn+1

nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x n + 1

n

∣∣∣∣ = |x|



March 31, 2011

1302 C H A P T E R 10 INFINITE SERIES

Then ρ < 1 when |x| < 1, so that the radius of convergence is R = 1, and the series converges absolutely on the interval

|x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=0

n, which diverges by the Divergence Test.

For the endpoint x = −1, the series becomes
∞∑

n=1

(−1)nn, which also diverges by the Divergence Test. Thus, the series

∞∑
n=0

nxn converges for −1 < x < 1 and diverges elsewhere.

10.
∞∑

n=1

2n

n
xn

solution With an = 2n

n xn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1xn+1

n + 1
· n

2nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2x
n

n + 1

∣∣∣∣ = |2x|

ρ < 1 when |x| < 1
2 , so the radius of convergence is R = 1

2 , and the series converges absolutely on the interval |x| < 1
2 ,

or − 1
2 < x < 1

2 . For the endpoint x = 1
2 , the series becomes

∞∑
n=1

1

n
, which is the divergent harmonic series. For the

endpoint x = − 1
2 , the series becomes

∞∑
n=1

(−1)n

n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=1

xn

n
xn

converges for − 1
2 ≤ x < 1

2 and diverges elsewhere.

11.
∞∑

n=1

(−1)n
x2n+1

2nn

solution With an = (−1)n
x2n+1

2nn
,

ρ = lim
n→∞

∣∣∣∣∣ x2(n+1)+1

2n+1(n + 1)
· 2nn

x2n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

2
· n

n + 1

∣∣∣∣∣ =
∣∣∣∣∣x

2

2

∣∣∣∣∣
Then ρ < 1 when |x| <

√
2, so the radius of convergence is R = √

2, and the series converges absolutely on the interval

−√
2 < x <

√
2. For the endpoint x = −√

2, the series becomes
∞∑

n=1

(−1)n
−√

2

n
=

∞∑
n=1

(−1)n+1
√

2

n
, which converges

by the Leibniz test. For the endpoint x = √
2, the series becomes

∞∑
n=1

(−1)n

√
2

n
which also converges by the Leibniz test.

Thus the series
∞∑

n=1

(−1)n
x2n+1

2nn
converges for −√

2 ≤ x ≤ √
2 and diverges elsewhere.

12.
∞∑

n=0

(−1)n
n

4n
x2n

solution With an = (−1)n
n

4n
x2n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)x2(n+1)

4n+1
· 4n

nx2n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

4
· n + 1

n

∣∣∣∣∣ =
∣∣∣∣∣x

2

4

∣∣∣∣∣
Then ρ < 1 when |x2| < 4, or |x| < 2, so the radius of convergence is R = 2, and the series converges absolutely for

−2 < x < 2. At both endpoints x = ±2, the series becomes
∞∑

n=0

(−1)nn, which diverges by the Divergence Test. Thus,

the series
∞∑

n=0

(−1)n
n

4n
x2n converges for −2 < x < 2 and diverges elsewhere.
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13.
∞∑

n=4

xn

n5

solution With an = xn

n5 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)5 · n5

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

n

n + 1

)5
∣∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval

|x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

1

n5 , which is a convergent p-series. For the

endpoint x = −1, the series becomes
∞∑

n=1

(−1)n

n5 , which converges by the Leibniz Test. Thus, the series
∞∑

n=4

xn

n5 converges

for −1 ≤ x ≤ 1 and diverges elsewhere.

14.
∞∑

n=8

n7xn

solution With an = n7xn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)7xn+1

n7xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

n + 1

n

)7
∣∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so that the radius of convergence is R = 1, and the series converges absolutely on the intervale

−1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=8

n7, which diverges by the Divergence test; for the endpoints

x = −1, the series becomes
∞∑

n=8

(−1)nn7, which also diverges by the Divergence test. Thus the series
∞∑

n=8

n7xn converges

for −1 < x < 1 and diverges elsewhere.

15.
∞∑

n=0

xn

(n!)2

solution With an = xn

(n!)2 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

((n + 1)!)2
· (n!)2

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

1

n + 1

)2
∣∣∣∣∣ = 0

ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.

16.
∞∑

n=0

8n

n! xn

solution With an = 8nxn

n! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣8n+1xn+1

(n + 1)! · n!
8nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣8x · 1

n + 1

∣∣∣∣ = 0

ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.

17.
∞∑

n=0

(2n)!
(n!)3

xn

solution With an = (2n)!xn

(n!)3 , and assuming x 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (2(n + 1))!xn+1

((n + 1)!)3
· (n!)3

(2n)!xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x (2n + 2)(2n + 1)

(n + 1)3

∣∣∣∣
= lim

n→∞

∣∣∣∣∣x 4n2 + 6n + 2

n3 + 3n2 + 3n + 1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x 4n−1 + 6n−1 + 2n−3

1 + 3n−1 + 3n−2 + n−3

∣∣∣∣∣ = 0

Then ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.
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18.
∞∑

n=0

4n

(2n + 1)!x
2n−1

solution With an = 4nx2n−1

(2n+1)! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣4n+1x2n+1

(2n + 3)! · (2n + 1)!
4nx2n−1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 4x2

(2n + 3)(2n + 2)

∣∣∣∣∣ = 0

Then ρ is always less than 1, and the series converges absolutely for all x.

19.
∞∑

n=0

(−1)nxn√
n2 + 1

solution With an = (−1)nxn√
n2+1

,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1xn+1√
n2 + 2n + 2

·
√

n2 + 1

(−1)nxn

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣x
√

n2 + 1√
n2 + 2n + 2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣x
√

n2 + 1

n2 + 2n + 2

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣x
√

1 + 1/n2

1 + 2/n + 2/n2

∣∣∣∣∣∣
= |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval

−1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

(−1)n√
n2 + 1

, which converges by the Leibniz Test. For the

endpoint x = −1, the series becomes
∞∑

n=1

1√
n2 + 1

, which diverges by the Limit Comparison Test comparing with the

divergent harmonic series. Thus, the series
∞∑

n=0

(−1)nxn√
n2 + 1

converges for −1 < x ≤ 1 and diverges elsewhere.

20.
∞∑

n=0

xn

n4 + 2

solution With an = xn

n4+2
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)4 + 2
· n4 + 2

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x n4 + 2

n4 + 4n3 + 6n2 + 4n + 3

∣∣∣∣∣ = |x|

ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval |x| < 1,

or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

1

n4 + 2
. Because 1

n4+2
< 1

n4 and the series
∞∑

n=0

1

n4
is a

convergent p-series, the endpoint series converges by the Comparison Test. For the endpoint x = −1, the series becomes
∞∑

n=1

(−1)n

n4 + 2
, which converges by the Leibniz Test. Thus, the series

∞∑
n=0

xn

n4 + 2
converges for −1 ≤ x ≤ 1 and diverges

elsewhere.

21.
∞∑

n=15

x2n+1

3n + 1

solution With an = x2n+1

3n + 1
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x2n+3

3n + 4
· 3n + 1

x2n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x2 3n + 1

3n + 4

∣∣∣∣ = |x2|

Then ρ < 1 when |x2| < 1, so the radius of convergence is R = 1, and the series converges absolutely for −1 < x < 1.

For the endpoint x = 1, the series becomes
∞∑

n=15

1

3n + 1
, which diverges by the Limit Comparison Test comparing
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with the divergent harmonic series. For the endpoint x = −1, the series becomes
∞∑

n=15

−1

3n + 1
, which also diverges by

the Limit Comparison Test comparing with the divergent harmonic series. Thus, the series
∞∑

n=15

x2n+1

3n + 1
converges for

−1 < x < 1 and diverges elsewhere.

22.
∞∑

n=1

xn

n − 4 ln n

solution With an = xn

n−4 ln n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1) − 4 ln(n + 1)
· n − 4 ln n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x n − 4 ln n

(n + 1) − 4 ln(n + 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣x 1 − 4(ln n)/n

1 + n−1 − 4(ln(n + 1))/n

∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval |x| < 1,

or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

1

n − 4 ln n
. Because 1

n−4 ln n
> 1

n and
∞∑

n=1

1

n
is the

divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = −1, the series

becomes
∞∑

n=1

(−1)n

n − 4 ln n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=1

xn

n − 4 ln n
converges for −1 ≤ x < 1

and diverges elsewhere.

23.
∞∑

n=2

xn

ln n

solution With an = xn

ln n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

ln(n + 1)
· ln n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x ln(n + 1)

ln n

∣∣∣∣ = lim
n→∞

∣∣∣∣x 1/(n + 1)

1/n

∣∣∣∣ = lim
n→∞

∣∣∣∣x n

n + 1

∣∣∣∣ = |x|

using L’Hôpital’s rule. Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely

on the interval |x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=2

1

ln n
. Because 1

ln n
> 1

n and

∞∑
n=2

1

n
is the divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = −1,

the series becomes
∞∑

n=2

(−1)n

ln n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=2

xn

ln n
converges for −1 ≤ x < 1

and diverges elsewhere.

24.
∞∑

n=2

x3n+2

ln n

solution With an = x3n+2

ln n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x3n+5

ln(n + 1)
· ln n

x3n+2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x3 · ln(n + 1)

ln n

∣∣∣∣ = lim
n→∞

∣∣∣∣x3 · 1/(n + 1)

1/n

∣∣∣∣
= lim

n→∞

∣∣∣∣x3 · n

n + 1

∣∣∣∣ = |x3|

using L’Hôpital’s rule. Thus ρ < 1 when |x3| < 1, so the radius of convergence is 1, and the series converges absolutely

on the interval |x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=2

1

ln n
. Because 1

ln n
> 1

n and

∞∑
n=2

1

n
is the divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = −1,

the series becomes
∞∑

n=2

(−1)3n+2

ln n
=

∞∑
n=2

(−1)n

ln n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=2

x3n+2

ln n

converges for −1 ≤ x < 1 and diverges elsewhere.
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25.
∞∑

n=1

n(x − 3)n

solution With an = n(x − 3)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)(x − 3)n+1

n(x − 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(x − 3) · n + 1

n

∣∣∣∣ = |x − 3|

Then ρ < 1 when |x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

|x − 3| < 1, or 2 < x < 4. For the endpoint x = 4, the series becomes
∞∑

n=1

n, which diverges by the Divergence Test.

For the endpoint x = 2, the series becomes
∞∑

n=1

(−1)nn, which also diverges by the Divergence Test. Thus, the series

∞∑
n=1

n(x − 3)n converges for 2 < x < 4 and diverges elsewhere.

26.
∞∑

n=1

(−5)n(x − 3)n

n2

solution With an = (−5)n(x−3)n

n2 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−5)n+1(x − 3)n+1

(n + 1)2
· n2

(−5)n(x − 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣5(x − 3) · n2

n2 + 2n + 1

∣∣∣∣∣
= lim

n→∞

∣∣∣∣5(x − 3) · 1

1 + 2n−1 + n−2

∣∣∣∣ = |5(x − 3)|

Then ρ < 1 when |5(x − 3)| < 1, or |x − 3| < 1
5 . Thus the radius of convergence is 5, and the series converges absolutely

on the interval |x − 3| < 1
5 , or 14

5 < x < 16
5 . For the endpoint x = 16

5 , the series becomes
∞∑

n=1

(−1)n

n2
, which converges

by the Leibniz Test. For the endpoint x = 14
5 , the series becomes

∞∑
n=1

1

n2
, which is a convergent p-series. Thus, the series

∞∑
n=1

(−5)n(x − 3)n

n2
converges for 14

5 ≤ x ≤ 16
5 and diverges elsewhere.

27.
∞∑

n=1

(−1)nn5(x − 7)n

solution With an = (−1)nn5(x − 7)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1(n + 1)5(x − 7)n+1

(−1)nn5(x − 7)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣(x − 7) · (n + 1)5

n5

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 7) · n5 + . . .

n5

∣∣∣∣∣ = |x − 7|

Then ρ < 1 when |x − 7| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

|x − 7| < 1, or 6 < x < 8. For the endpoint x = 6, the series becomes
∞∑

n=1

(−1)2nn5 =
∞∑

n=1

n5, which diverges by the

Divergence Test. For the endpoint x = 8, the series becomes
∞∑

n=1

(−1)nn5, which also diverges by the Divergence Test.

Thus, the series
∞∑

n=1

(−1)nn5(x − 7)n converges for 6 < x < 8 and diverges elsewhere.
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28.
∞∑

n=0

27n(x − 1)3n+2

solution With an = 27n(x − 1)3n+2,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣27n+1(x − 1)3n+5

27n(x − 1)3n+2

∣∣∣∣∣ = lim
n→∞

∣∣∣27(x − 1)3
∣∣∣ = |27(x − 1)3|

Then ρ < 1 when |27(x − 1)3| < 1, or when |(x − 1)3| < 1
27 , so when |x − 1| < 1

3 . Thus the radius of convergence is 1
3 ,

and the series converges absolutely when 2
3 < x < 4

3 . For the endpoint x = 2
3 , the series becomes

∞∑
n=0

27n

(−1

3

)3n+2
=

1

9

∞∑
n=0

(−1)n which diverges by the Divergence test. For the endpoint x = 4
3 , the series becomes

∞∑
n=0

27n

(
1

3

)3n+2
=

1

9

∞∑
n=0

1, which also diverges by the Divergence Test. Thus the series
∞∑

n=0

27n(x − 1)3n+2 converges for 2
3 < x < 4

3 and

diverges elsewhere.

29.
∞∑

n=1

2n

3n
(x + 3)n

solution With an = 2n(x+3)n

3n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1(x + 3)n+1

3(n + 1)
· 3n

2n(x + 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2(x + 3) · 3n

3n + 3

∣∣∣∣
= lim

n→∞

∣∣∣∣2(x + 3) · 1

1 + 1/n

∣∣∣∣ = |2(x + 3)|

Then ρ < 1 when |2(x + 3)| < 1, so when |x + 3| < 1
2 . Thus the radius of convergence is 1

2 , and the series converges

absolutely on the interval |x + 3| < 1
2 , or − 7

2 < x < − 5
2 . For the endpoint x = − 5

2 , the series becomes
∞∑

n=1

1

3n
,

which diverges because it is a multiple of the divergent harmonic series. For the endpoint x = − 7
2 , the series becomes

∞∑
n=1

(−1)n

3n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=1

2n

3n
(x + 3)n converges for − 7

2 ≤ x < − 5
2 and

diverges elsewhere.

30.
∞∑

n=0

(x − 4)n

n!

solution With an = (x−4)n

n! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x − 4)n+1

(n + 1)! · n!
(x − 4)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(x − 4)
1

n

∣∣∣∣ = 0

Thus ρ < 1 for all x, so the radius of convergence is infinite, and
∞∑

n=0

(x − 4)n

n! converges for all x.

31.
∞∑

n=0

(−5)n

n! (x + 10)n

solution With an = (−5)n

n! (x + 10)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−5)n+1(x + 10)n+1

(n + 1)! · n!
(−5)n(x + 10)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣5(x + 10)
1

n

∣∣∣∣ = 0

Thus ρ < 1 for all x, so the radius of convergence is infinite, and
∞∑

n=0

(−5)n

n! (x + 10)n converges for all x.
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32.
∞∑

n=10

n! (x + 5)n

solution With an = n!(x + 5)n„ and assuming x + 5 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)!(x + 5)n+1

n!(x + 5)n

∣∣∣∣∣ = lim
n→∞ |(n + 1)(x + 5)| = ∞

Thus ρ < 1 only if x + 5 = 0, so the radius of convergence is zero, and
∞∑

n=10

n! (x + 5)n converges only for x = −5.

33.
∞∑

n=12

en(x − 2)n

solution With an = en(x − 2)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ e
n+1(x − 2)n+1

en(x − 2)n

∣∣∣∣∣ = lim
n→∞ |e(x − 2)| = |e(x − 2)|

Thus ρ < 1 when |e(x − 2)| < 1, so when |x − 2| < e−1. Thus the radius of convergence is e−1, and the series converges
absolutely on the interval |x − 2| < e−1, or 2 − e−1 < x < 2 + e−1. For the endpoint x = 2 + e−1, the series becomes
∞∑

n=1

1, which diverges by the Divergence Test. For the endpoint x = 2 − e−1, the series becomes
∞∑

n=1

(−1)n, which also

diverges by the Divergence Test. Thus, the series
∞∑

n=12

en(x − 2)n converges for 2 − e−1 < x < 2 + e−1 and diverges

elsewhere.

34.
∞∑

n=2

(x + 4)n

(n ln n)2

solution With an = (x+4)n

(n ln n)2 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x + 4)n+1

((n + 1) ln(n + 1))2
· (n ln n)2

(x + 4)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣(x + 4) ·
(

n

n + 1
· ln n

ln(n + 1)

)2
∣∣∣∣∣ = |x + 4|

applying L’Hôpital’s rule to evaluate the second term in the product. Thus ρ < 1 when |x + 4| < 1, so the radius of
convergence is 1, and the series converges absolutely on the interval |x + 4| < 1, or −5 < x < −3. For the endpoint

x = −3, the series becomes
∞∑

n=1

1

(n ln n)2
, which converges by the Limit Comparison Test comparing with the convergent

p-series
∞∑

n=2

1

n2
. For the endpoint x = −5, the series becomes

∞∑
n=1

(−1)n

(n ln n)2
, which converges by the Leibniz Test. Thus,

the series
∞∑

n=2

(x + 4)n

(n ln n)2
converges for −5 ≤ x ≤ −3 and diverges elsewhere.

In Exercises 35–40, use Eq. (2) to expand the function in a power series with center c = 0 and determine the interval of
convergence.

35. f (x) = 1

1 − 3x

solution Substituting 3x for x in Eq. (2), we obtain

1

1 − 3x
=

∞∑
n=0

(3x)n =
∞∑

n=0

3nxn.

This series is valid for |3x| < 1, or |x| < 1
3 .
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36. f (x) = 1

1 + 3x

solution Substituting −3x for x in Eq. (2), we obtain

1

1 + 3x
=

∞∑
n=0

(−3x)n =
∞∑

n=0

(−3)nxn.

This series is valid for | − 3x| < 1, or |x| < 1
3 .

37. f (x) = 1

3 − x

solution First write

1

3 − x
= 1

3
· 1

1 − x
3

.

Substituting x
3 for x in Eq. (2), we obtain

1

1 − x
3

=
∞∑

n=0

(x

3

)n =
∞∑

n=0

xn

3n
;

Thus,

1

3 − x
= 1

3

∞∑
n=0

xn

3n
=

∞∑
n=0

xn

3n+1
.

This series is valid for |x/3| < 1, or |x| < 3.

38. f (x) = 1

4 + 3x

solution First write

1

4 + 3x
= 1

4
· 1

1 + 3x
4

.

Substituting − 3x
4 for x in Eq. (2), we obtain

1

1 + 3x
4

=
∞∑

n=0

(
−3x

4

)n

=
∞∑

n=0

(−1)n
3nxn

4n
;

Thus,

1

4 + 3x
= 1

4

∞∑
n=0

(−1)n
3nxn

4n
=

∞∑
n=0

(−1)n
3nxn

4n+1
.

This series is valid for | − 3x/4| < 1, or |x| < 4
3 .

39. f (x) = 1

1 + x2

solution Substituting −x2 for x in Eq. (2), we obtain

1

1 + x2
=

∞∑
n=0

(−x2)n =
∞∑

n=0

(−1)nx2n

This series is valid for |x| < 1.

40. f (x) = 1

16 + 2x3

solution First rewrite

1

16 + 2x3
= 1

16
· 1

1 + x3

8

Now substitute − x3

8 for x in Eq. (2) to obtain

1

1 + x3

8

=
∞∑

n=0

(
−x3

8

)n

=
∞∑

n=0

(−1)n
x3n

8
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Thus,

1

16 + 2x3
= 1

16
· 1

1 + x3

8

= 1

16
·

∞∑
n=0

(−1)n
x3n

8

This series is valid for |x3| < 8, or |x| < 2.

41. Use the equalities

1

1 − x
= 1

−3 − (x − 4)
= − 1

3

1 + (
x−4

3

)
to show that for |x − 4| < 3,

1

1 − x
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1

solution Substituting − x−4
3 for x in Eq. (2), we obtain

1

1 +
(

x−4
3

) =
∞∑

n=0

(
−x − 4

3

)n

=
∞∑

n=0

(−1)n
(x − 4)n

3n
.

Thus,

1

1 − x
= −1

3

∞∑
n=0

(−1)n
(x − 4)n

3n
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1
.

This series is valid for | − x−4
3 | < 1, or |x − 4| < 3.

42. Use the method of Exercise 41 to expand 1/(1 − x) in power series with centers c = 2 and c = −2. Determine the
interval of convergence.

solution For c = 2, write

1

1 − x
= 1

−1 − (x − 2)
= − 1

1 + (x − 2)
.

Substituting −(x − 2) for x in Eq. (2), we obtain

1

1 + (x − 2)
=

∞∑
n=0

(−(x − 2))n =
∞∑

n=0

(−1)n(x − 2)n.

Thus,

1

1 − x
= −

∞∑
n=0

(−1)n(x − 2)n =
∞∑

n=0

(−1)n+1(x − 2)n.

This series is valid for | − (x − 2)| < 1, or |x − 2| < 1.
For c = −2, write

1

1 − x
= 1

3 − (x + 2)
= 1

3
· 1

1 − x+2
3

.

Substituting x+2
3 for x in Eq. (2), we obtain

1

1 − x+2
3

=
∞∑

n=0

(
x + 2

3

)n

=
∞∑

n=0

(x + 2)n

3n
.

Thus,

1

1 − x
= 1

3

∞∑
n=0

(x + 2)n

3n
=

∞∑
n=0

(x + 2)n

3n+1
.

This series is valid for | x+2
3 | < 1, or |x + 2| < 3.
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43. Use the method of Exercise 41 to expand 1/(4 − x) in a power series with center c = 5. Determine the interval of
convergence.

solution First write

1

4 − x
= 1

−1 − (x − 5)
= − 1

1 + (x − 5)
.

Substituting −(x − 5) for x in Eq. (2), we obtain

1

1 + (x − 5)
=

∞∑
n=0

(−(x − 5))n =
∞∑

n=0

(−1)n(x − 5)n.

Thus,

1

4 − x
= −

∞∑
n=0

(−1)n(x − 5)n =
∞∑

n=0

(−1)n+1(x − 5)n.

This series is valid for | − (x − 5)| < 1, or |x − 5| < 1.

44. Find a power series that converges only for x in [2, 6).

solution The power series must be centered at c = 6 + 2

2
= 4, with radius of convergence R = 2. Consider the

following series:

∞∑
n=1

(x − 4)n

n2n
.

With an = 1
n2n ,

r = lim
n→∞

n2n

(n + 1)2n+1
= 1

2
lim

n→∞
n

n + 1
= 1

2
.

The radius of convergence is therefore R = r−1 = 2, and the series converges absolutely for |x − 4| < 2, or 2 < x < 6.

For the endpoint x = 6, the series becomes
∞∑

n=1

(6 − 4)n

n·2n =
∞∑

n=1

1

n
, which is the divergent harmonic series. For the

endpoint x = 2, the series becomes
∞∑

n=1

(2 − 4)n

n·2n =
∞∑

n=1

(−1)n

n
, which converges by the Leibniz Test. Therefore, the

series converges for 2 ≤ x < 6, as desired.

45. Apply integration to the expansion

1

1 + x
=

∞∑
n=0

(−1)nxn = 1 − x + x2 − x3 + · · ·

to prove that for −1 < x < 1,

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
= x − x2

2
+ x3

3
− x4

4
+ · · ·

solution To obtain the first expansion, substitute −x for x in Eq. (2):

1

1 + x
=

∞∑
n=0

(−x)n =
∞∑

n=0

(−1)nxn.

This expansion is valid for | − x| < 1, or −1 < x < 1.
Upon integrating both sides of the above equation, we find

ln(1 + x) =
∫

dx

1 + x
=
∫ ⎛

⎝ ∞∑
n=0

(−1)nxn

⎞
⎠ dx.
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Integrating the series term-by-term then yields

ln(1 + x) = C +
∞∑

n=0

(−1)n
xn+1

n + 1
.

To determine the constant C, set x = 0. Then 0 = ln(1 + 0) = C. Finally,

ln(1 + x) =
∞∑

n=0

(−1)n
xn+1

n + 1
=

∞∑
n=1

(−1)n−1 xn

n
.

46. Use the result of Exercise 45 to prove that

ln
3

2
= 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

Use your knowledge of alternating series to find an N such that the partial sum SN approximates ln 3
2 to within an error

of at most 10−3. Confirm using a calculator to compute both SN and ln 3
2 .

solution In the previous exercise we found that

ln(1 + x) =
∞∑

n=0

(−1)n
xn+1

n + 1
.

Setting x = 1
2 yields:

ln
3

2
=

∞∑
n=1

(−1)n−1

(
1
2

)n

n
=

∞∑
n=1

(−1)n−1

n2n
= 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

Note that the series for ln 3
2 is an alternating series with an = 1

n2n . The error in approximating ln 3
2 by the partial sum

SN is therefore bounded by ∣∣∣∣ln 3

2
− SN

∣∣∣∣ < aN+1 = 1

(N + 1)2N+1
.

To obtain an error of at most 10−3, we must find an N such that

1

(N + 1)2N+1
< 10−3 or (N + 1)2N+1 > 1000.

For N = 6, (N + 1)2N+1 = 7 · 27 = 896 < 1000, but for N = 7, (N + 1)2N+1 = 8 · 28 = 2048 > 1000; hence, the
smallest value for N is N = 7. The corresponding approximation is

S7 = 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ 1

5 · 25 − 1

6 · 26
+ 1

7 · 27 = 0.405803571.

Now, ln 3
2 = 0.405465108, so ∣∣∣∣ln 3

2
− S7

∣∣∣∣ = 3.385 × 10−4 < 10−3.

47. Let F(x) = (x + 1) ln(1 + x) − x.

(a) Apply integration to the result of Exercise 45 to prove that for −1 < x < 1,

F(x) =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluate at x = 1
2 to prove

3

2
ln

3

2
− 1

2
= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + · · ·

(c) Use a calculator to verify that the partial sum S4 approximates the left-hand side with an error no greater than the
term a5 of the series.
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solution
(a) Note that ∫

ln(x + 1) dx = (x + 1) ln(x + 1) − x + C

Then integrating both sides of the result of Exercise 45 gives

(x + 1) ln(x + 1) − x =
∫

ln(x + 1) dx =
∫ ∞∑

n=1

(−1)n−1xn

n
dx

For −1 < x < 1, which is the interval of convergence of the series in Exercise 45, therefore, we can integrate term by
term to get

(x + 1) ln(x + 1) − x =
∞∑

n=1

(−1)n−1

n

∫
xn dx =

∞∑
n=1

(−1)n−1

n
· xn+1

n + 1
+ C =

∞∑
n=1

(−1)n+1 xn+1

n(n + 1)
+ C

(noting that (−1)n−1 = (−1)n+1). To determine C, evaluate both sides at x = 0 to get

0 = ln 1 − 0 = 0 + C

so that C = 0 and we get finally

(x + 1) ln(x + 1) − x =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluating the result of part(a) at x = 1
2 gives

3

2
ln

3

2
− 1

2
=

∞∑
n=1

(−1)n+1 1

n(n + 1)2n+1

= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + . . .

(c)

S4 = 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 = 0.1078125

a5 = 1

5 · 6 · 26
≈ 0.0005208

3

2
ln

3

2
− 1

2
≈ 0.10819766

and ∣∣∣∣S4 − 3

2
ln

3

2
− 1

2

∣∣∣∣ ≈ 0.0003852 < a5

48. Prove that for |x| < 1, ∫
dx

x4 + 1
= x − x5

5
+ x9

9
− · · ·

Use the first two terms to approximate
∫ 1/2

0 dx/(x4 + 1) numerically. Use the fact that you have an alternating series to
show that the error in this approximation is at most 0.00022.

solution Substitute −x4 for x in Eq. (2) to get

1

1 + x4
=

∞∑
n=0

(−x4)n =
∞∑

n=0

(−1)nx4n

This is valid for |x| < 1, so for x in that range we can integrate the right-hand side term by term to get∫
1

1 + x4
dx =

∞∑
n=0

∫
(−1)nx4n dx =

∞∑
n=0

(−1)n
x4n+1

4n + 1
+ C

= x − x5

5
+ x9

9
− x13

13
+ · · · + C
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Using the first two terms, we have

∫ 1/2

0

1

1 + x4
dx ≈ 1

2
− 1

25 · 5
= 79

160
= 0.49375

Since this is an alternating series, the error in the approximation is bounded by the first unused term, so by

1

29 · 9
= 1

4608
≈ 0.000217 < 0.00022

49. Use the result of Example 7 to show that

F(x) = x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · ·

is an antiderivative of f (x) = tan−1 x satisfying F(0) = 0. What is the radius of convergence of this power series?

solution For −1 < x < 1, which is the interval of convergence for the power series for arctangent, we can integrate
term-by-term, so integrate that power series to get

F(x) =
∫

tan−1 x dx =
∞∑

n=0

∫
(−1)nx2n+1

2n + 1
dx =

∞∑
n=0

(−1)n
x2n+2

(2n + 1)(2n + 2)

= x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · · + C

If we assume F(0) = 0, then we have C = 0. The radius of convergence of this power series is the same as that of the
original power series, which is 1.

50. Verify that function F(x) = x tan−1 x − 1
2 log(x2 + 1) is an antiderivative of f (x) = tan−1 x satisfying F(0) = 0.

Then use the result of Exercise 49 with x = π
6 to show that

π

6
√

3
− 1

2
ln

4

3
= 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
+ · · ·

Use a calculator to compare the value of the left-hand side with the partial sum S4 of the series on the right.

solution We have

F ′(x) = tan−1 x + x

1 + x2
− 1

2
· 1

x2 + 1
· 2x = tan−1 x + x

1 + x2
− x

1 + x2
= tan−1 x

so that F(x) is an antiderivative of tan−1 x, and clearly F(0) = 0. So applying Exercise 49 for this F , and setting x = 1√
3

,

gives

1√
3

tan−1 1√
3

− 1

2
ln

(
1

3
+ 1

)
= π

6
√

3
− 1

2
ln

4

3

= (1/
√

3)2

1 · 2
− (1/

√
3)4

3 · 4
+ (1/

√
3)6

5 · 6
− (1/

√
3)8

7 · 8
+ . . .

= 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
+ . . .

Now, we have

S4 = 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
= 3593

22680
≈ 0.1548215

π

6
√

3
− 1

2
ln

4

3
≈ 0.158459

so the two differ by less than 0.00004.
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51. Evaluate
∞∑

n=1

n

2n
. Hint: Use differentiation to show that

(1 − x)−2 =
∞∑

n=1

nxn−1 (for |x| < 1)

solution Differentiate both sides of Eq. (2) to obtain

1

(1 − x)2
=

∞∑
n=1

nxn−1.

Setting x = 1
2 then yields

∞∑
n=1

n

2n−1
= 1(

1 − 1
2

)2
= 4.

Divide this equation by 2 to obtain

∞∑
n=1

n

2n
= 2.

52. Use the power series for (1 + x2)−1 and differentiation to prove that for |x| < 1,

2x

(x2 + 1)2
=

∞∑
n=1

(−1)n−1(2n)x2n−1

solution From Exercise 39, we know that for −1 < x < 1,

1

1 + x2
=

∞∑
n=0

(−1)nx2n

Thus for x in this range, we can differentiate both sides, and differentiate the right-hand side term by term, to get

d

dx

1

1 + x2
= −2x

(x2 + 1)2
=

∞∑
n=1

(−1)n2nx2n−1

(Note the change in the lower limit of summation, since the n = 0 term is a constant, whose derivative is zero). Cancelling
the minus sign on the left gives

2x

(x2 + 1)2
=

∞∑
n=1

(−1)n−1(2n)x2n−1

53. Show that the following series converges absolutely for |x| < 1 and compute its sum:

F(x) = 1 − x − x2 + x3 − x4 − x5 + x6 − x7 − x8 + · · ·
Hint: Write F(x) as a sum of three geometric series with common ratio x3.

solution Because the coefficients in the power series are all ±1, we find

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

The radius of convergence is therefore R = r−1 = 1, and the series converges absolutely for |x| < 1.
By Exercise 43 of Section 11.4, any rearrangement of the terms of an absolutely convergent series yields another

absolutely convergent series with the same sum as the original series. Following the hint, we now rearrange the terms of
F(x) as the sum of three geometric series:

F(x) =
(

1 + x3 + x6 + · · ·
)

−
(
x + x4 + x7 + · · ·

)
−
(
x2 + x5 + x8 + · · ·

)

=
∞∑

n=0

(x3)n −
∞∑

n=0

x(x3)n −
∞∑

n=0

x2(x3)n = 1

1 − x3
− x

1 − x3
− x2

1 − x3
= 1 − x − x2

1 − x3
.
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54. Show that for |x| < 1,

1 + 2x

1 + x + x2
= 1 + x − 2x2 + x3 + x4 − 2x5 + x6 + x7 − 2x8 + · · ·

Hint: Use the hint from Exercise 53.

solution The terms in the series on the right-hand side are either of the form xn or −2xn for some n. Because

lim
n→∞

n
√

2 = lim
n→∞

n
√

1 = 1,

it follows that

lim
n→∞

n
√|an| = |x|.

Hence, by the Root Test, the series converges absolutely for |x| < 1.
By Exercise 43 of Section 11.4, any rearrangement of the terms of an absolutely convergent series yields another

absolutely convergent series with the same sum as the original series. If we let S denote the sum of the series, then

S =
(

1 + x3 + x6 + · · ·
)

+
(
x + x4 + x7 + · · ·

)
− 2

(
x2 + x5 + x8 + · · ·

)

= 1

1 − x3
+ x

1 − x3
− 2x2

1 − x3
= 1 + x − 2x2

1 − x3
= (1 − x)(2x + 1)

(1 − x)(1 + x + x2)
= 2x + 1

1 + x + x2
.

55. Find all values of x such that
∞∑

n=1

xn2

n! converges.

solution With an = xn2

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|(n+1)2

(n + 1)! · n!
|x|n2 = |x|2n+1

n + 1
.

if |x| ≤ 1, then

lim
n→∞

|x|2n+1

n + 1
= 0,

and the series converges absolutely. On the other hand, if |x| > 1, then

lim
n→∞

|x|2n+1

n + 1
= ∞,

and the series diverges. Thus,
∞∑

n=1

xn2

n! converges for −1 ≤ x ≤ 1 and diverges elsewhere.

56. Find all values of x such that the following series converges:

F(x) = 1 + 3x + x2 + 27x3 + x4 + 243x5 + · · ·
solution Observe that F(x) can be written as the sum of two geometric series:

F(x) =
(

1 + x2 + x4 + · · ·
)

+
(

3x + 27x3 + 243x5 + · · ·
)

=
∞∑

n=0

(x2)n +
∞∑

n=0

3x(9x2)n

The first geometric series converges for |x2| < 1, or |x| < 1; the second geometric series converges for |9x2| < 1, or
|x| < 1

3 . Since both geometric series must converge for F(x) to converge, we find that F(x) converges for |x| < 1
3 , the

intersection of the intervals of convergence for the two geometric series.

57. Find a power series P(x) =
∞∑

n=0

anxn satisfying the differential equation y′ = −y with initial condition y(0) = 1.

Then use Theorem 1 of Section 5.8 to conclude that P(x) = e−x .

solution Let P(x) =
∞∑

n=0

anxn and note that P(0) = a0; thus, to satisfy the initial condition P(0) = 1, we must take

a0 = 1. Now,

P ′(x) =
∞∑

n=1

nanxn−1,
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so

P ′(x) + P(x) =
∞∑

n=1

nanxn−1 +
∞∑

n=0

anxn =
∞∑

n=0

[
(n + 1)an+1 + an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus

(n + 1)an+1 + an = 0 or an+1 = − an

n + 1
.

Starting from a0 = 1, we then calculate

a1 = −a0

1
= −1;

a2 = −a1

2
= 1

2
;

a3 = −a2

3
= −1

6
= − 1

3! ;
and, in general,

an = (−1)n
1

n! .
Hence,

P(x) =
∞∑

n=0

(−1)n
xn

n! .

The solution to the initial value problem y′ = −y, y(0) = 1 is y = e−x . Because this solution is unique, it follows that

P(x) =
∞∑

n=0

(−1)n
xn

n! = e−x .

58. Let C(x) = 1 − x2

2! + x4

4! − x6

6! + · · · .

(a) Show that C(x) has an infinite radius of convergence.
(b) Prove that C(x) and f (x) = cos x are both solutions of y′′ = −y with initial conditions y(0) = 1, y′(0) = 0. This
initial value problem has a unique solution, so we have C(x) = cos x for all x.

solution
(a) Consider the series

C(x) = 1 − x2

2! + x4

4! − x6

6! + · · · =
∞∑

n=0

(−1)n
x2n

(2n)! .

With an = (−1)n x2n

(2n)! , ∣∣∣∣an+1

an

∣∣∣∣ = |x|2n+2

(2n + 2)! · (2n)!
|x|2n

= |x|2
(2n + 2)(2n + 1)

,

and

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0.

The radius of convergence for C(x) is therefore R = r−1 = ∞.
(b) Differentiating the series defining C(x) term-by-term, we find

C′(x) =
∞∑

n=1

(−1)n(2n)
x2n−1

(2n)! =
∞∑

n=1

(−1)n
x2n−1

(2n − 1)!
and

C′′(x) =
∞∑

n=1

(−1)n(2n − 1)
x2n−2

(2n − 1)! =
∞∑

n=1

(−1)n
x2n−2

(2n − 2)!

=
∞∑

n=0

(−1)n+1 x2n

(2n)! = −
∞∑

n=0

(−1)n
x2n

(2n)! = −C(x).

Moreover, C(0) = 1 and C′(0) = 0.
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59. Use the power series for y = ex to show that

1

e
= 1

2! − 1

3! + 1

4! − · · ·

Use your knowledge of alternating series to find an N such that the partial sum SN approximates e−1 to within an error
of at most 10−3. Confirm this using a calculator to compute both SN and e−1.

solution Recall that the series for ex is

∞∑
n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

Setting x = −1 yields

e−1 = 1 − 1 + 1

2! − 1

3! + 1

4! − + · · · = 1

2! − 1

3! + 1

4! − + · · · .

This is an alternating series with an = 1
(n+1)! . The error in approximating e−1 with the partial sum SN is therefore

bounded by

|SN − e−1| ≤ aN+1 = 1

(N + 2)! .

To make the error at most 10−3, we must choose N such that

1

(N + 2)! ≤ 10−3 or (N + 2)! ≥ 1000.

For N = 4, (N + 2)! = 6! = 720 < 1000, but for N = 5, (N + 2)! = 7! = 5040; hence, N = 5 is the smallest value
that satisfies the error bound. The corresponding approximation is

S5 = 1

2! − 1

3! + 1

4! − 1

5! + 1

6! = 0.368055555

Now, e−1 = 0.367879441, so

|S5 − e−1| = 1.761 × 10−4 < 10−3.

60. Let P(x) =
∑
n=0

anxn be a power series solution to y′ = 2xy with initial condition y(0) = 1.

(a) Show that the odd coefficients a2k+1 are all zero.

(b) Prove that a2k = a2k−2/k and use this result to determine the coefficients a2k .

solution Let P(x) =
∞∑

n=0

anxn and note that P(0) = a0; thus, to satisfy the initial condition P(0) = 1, we must take

a0 = 1. Now,

P ′(x) =
∞∑

n=1

nanxn−1,

so

P ′(x) − 2xP (x) =
∞∑

n=1

nanxn−1 −
∞∑

n=0

2anxn+1 =
∞∑

n=1

nanxn−1 −
∞∑

n=2

2an−2xn−1

= a1 +
∞∑

n=2

[
nan − 2an−2

]
xn−1.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus, a1 = 0 and

nan − 2an−2 = 0 or an = 2an−2

n
.

(a) We know that a1 = 0 and

an = 2an−2

n
.
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Thus,

a3 = 2a1

3
= 0;

a5 = 2a3

5
= 0;

a7 = 2a5

7
= 0;

and, in general, a2k+1 = 0 for all k.
(b) Replace n by 2k in the equation

an = 2an−2

n
to obtain a2k = 2a2k−2

2k
= a2k−2

k
.

Starting from a0 = 1, we then calculate

a2 = a0

1
= 1 = 1

1! ;

a4 = a2

2
= 1

2
= 1

2! ;

a6 = a4

3
= 1

6
= 1

3! ;

and, in general, a2k = 1
k! .

61. Find a power series P(x) satisfying the differential equation

y′′ − xy′ + y = 0 9

with initial condition y(0) = 1, y′(0) = 0. What is the radius of convergence of the power series?

solution Let P(x) =
∞∑

n=0

anxn. Then

P ′(x) =
∞∑

n=1

nanxn−1 and P ′′(x) =
∞∑

n=2

n(n − 1)anxn−2.

Note that P(0) = a0 and P ′(0) = a1; in order to satisfy the initial conditions P(0) = 1, P ′(0) = 0, we must have a0 = 1
and a1 = 0. Now,

P ′′(x) − xP ′(x) + P(x) =
∞∑

n=2

n(n − 1)anxn−2 −
∞∑

n=1

nanxn +
∞∑

n=0

anxn

=
∞∑

n=0

(n + 2)(n + 1)an+2xn −
∞∑

n=1

nanxn +
∞∑

n=0

anxn

= 2a2 + a0 +
∞∑

n=1

[
(n + 2)(n + 1)an+2 − nan + an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus, 2a2 + a0 = 0 and
(n + 2)(n + 1)an+2 − (n − 1)an = 0, or

a2 = −1

2
a0 and an+2 = n − 1

(n + 2)(n + 1)
an.

Starting from a1 = 0, we calculate

a3 = 1 − 1

(3)(2)
a1 = 0;

a5 = 2

(5)(4)
a3 = 0;

a7 = 4

(7)(6)
a5 = 0;

and, in general, all of the odd coefficients are zero. As for the even coefficients, we have a0 = 1, a2 = − 1
2 ,
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a4 = 1

(4)(3)
a2 = − 1

4! ;

a6 = 3

(6)(5)
a4 = − 3

6! ;

a8 = 5

(8)(7)
a6 = −15

8!
and so on. Thus,

P(x) = 1 − 1

2
x2 − 1

4!x
4 − 3

6!x
6 − 15

8! x8 − · · ·

To determine the radius of convergence, treat this as a series in the variable x2, and observe that

r = lim
k→∞

∣∣∣∣a2k+2

a2k

∣∣∣∣ = lim
k→∞

2k − 1

(2k + 2)(2k + 1)
= 0.

Thus, the radius of convergence is R = r−1 = ∞.

62. Find a power series satisfying Eq. (9) with initial condition y(0) = 0, y′(0) = 1.

solution Let P(x) =
∞∑

n=0

anxn be a solution to Eq. (9). From the previous exercise, we know that

a2 = −1

2
a0 and an+2 = n − 1

(n + 2)(n + 1)
an.

To satisfy the initial condition P(0) = 0, P ′(0) = 1, we must have a0 = 0 and a1 = 1. Then

a2 = −1

2
a0 = 0;

a4 = 1

(4)(3)
a2 = 0;

a6 = 3

(6)(5)
a4 = 0;

and, in general, all of the even coefficients are zero. As in the previous exercise, all of the odd coefficients past a1 are also
equal to zero. Thus,

P(x) = x.

63. Prove that

J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 3)!x
2k+2

is a solution of the Bessel differential equation of order 2:

x2y′′ + xy′ + (x2 − 4)y = 0

solution Let J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 2)!x
2k+2. Then

J ′
2(x) =

∞∑
k=0

(−1)k(k + 1)

22k+1 k! (k + 2)!x
2k+1

J ′′
2 (x) =

∞∑
k=0

(−1)k(k + 1)(2k + 1)

22k+1 k! (k + 2)! x2k

and

x2J ′′
2 (x) + xJ ′

2(x) + (x2 − 4)J2(x) =
∞∑

k=0

(−1)k(k + 1)(2k + 1)

22k+1 k! (k + 2)! x2k+2 +
∞∑

k=0

(−1)k(k + 1)

22k+1 k! (k + 2)!x
2k+2

−
∞∑

k=0

(−1)k

22k+2 k! (k + 2)!x
2k+4 −

∞∑
k=0

(−1)k

22k k! (k + 2)!x
2k+2
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=
∞∑

k=0

(−1)kk(k + 2)

22kk!(k + 2)! x2k+2 +
∞∑

k=1

(−1)k−1

22k (k − 1)! (k + 1)!x
2k+2

=
∞∑

k=1

(−1)k

22k(k − 1)!(k + 1)!x
2k+2 −

∞∑
k=1

(−1)k

22k(k − 1)!(k + 1)!x
2k+2 = 0.

64. Why is it impossible to expand f (x) = |x| as a power series that converges in an interval around x = 0?
Explain using Theorem 2.

solution Suppose that there exists a c > 0 such that f can be represented by a power series on the interval (−c, c);
that is,

|x| =
∞∑

n=0

anxn

for |x| < c. Then it follows by Theorem 2 that |x| is differentiable on (−c, c). This contradicts the well known property
that f (x) = |x| is not differentiable at the point x = 0.

Further Insights and Challenges

65. Suppose that the coefficients of F(x) =
∞∑

n=0

anxn are periodic; that is, for some whole number M > 0, we have

aM+n = an. Prove that F(x) converges absolutely for |x| < 1 and that

F(x) = a0 + a1x + · · · + aM−1xM−1

1 − xM

Hint: Use the hint for Exercise 53.

solution Suppose the coefficients of F(x) are periodic, with aM+n = an for some whole number M and all n. The
F(x) can be written as the sum of M geometric series:

F(x) = a0

(
1 + xM + x2M + · · ·

)
+ a1

(
x + xM+1 + x2M+1 + · · ·

)
+

= a2

(
x2 + xM+2 + x2M+2 + · · ·

)
+ · · · + aM−1

(
xM−1 + x2M−1 + x3M−1 + · · ·

)

= a0

1 − xM
+ a1x

1 − xM
+ a2x2

1 − xM
+ · · · + aM−1xM−1

1 − xM
= a0 + a1x + a2x2 + · · · + aM−1xM−1

1 − xM
.

As each geometric series converges absolutely for |x| < 1, it follows that F(x) also converges absolutely for |x| < 1.

66. Continuity of Power Series Let F(x) =
∞∑

n=0

anxn be a power series with radius of convergence R > 0.

(a) Prove the inequality

|xn − yn| ≤ n|x − y|(|x|n−1 + |y|n−1) 10

Hint: xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1).

(b) Choose R1 with 0 < R1 < R. Show that the infinite series M =
∞∑

n=0

2n|an|Rn
1 converges. Hint: Show that n|an|Rn

1 <

|an|xn for all n sufficiently large if R1 < x < R.
(c) Use Eq. (10) to show that if |x| < R1 and |y| < R1, then |F(x) − F(y)| ≤ M|x − y|.
(d) Prove that if |x| < R, then F(x) is continuous at x. Hint: Choose R1 such that |x| < R1 < R. Show that if ε > 0 is
given, then |F(x) − F(y)| ≤ ε for all y such that |x − y| < δ, where δ is any positive number that is less than ε/M and
R1 − |x| (see Figure 6).

(     )(     )( ) x
0 R1 R−R x

x − d x + d

FIGURE 6 If x > 0, choose δ > 0 less than ε/M and R1 − x.

solution
(a) Take the absolute value of both sides of the identity

xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1),

and then apply the triangle inequality to obtain

|xn − yn| ≤ |x − y|
(
|x|n−1 + |x|n−2|y| + |x|n−3|y|2 + · · · + |x||y|n−2 + |y|n−1

)
.
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Now, if |x| ≤ |y| then |x|n−k |y|k−1 ≤ |y|n−k |y|k−1 = |y|n−1, and if |y| ≤ |x| then |x|n−k |y|k−1 ≤ |x|n−k |x|k−1 =
|x|n−1. In either case, |x|n−k |y|k−1 ≤ |x|n−1 + |y|n−1. Thus,

|xn − yn| ≤ |x − y|
(
|x|n−1 + (n − 2)(|x|n−1 + |y|n−1) + |y|n−1

)
= (n − 1)|x − y|

(
|x|n−1 + |y|n−1

)
≤ n|x − y|

(
|x|n−1 + |y|n−1

)
.

(b) Let 0 < R1 < R. Then,

ρ = lim
n→∞

2(n + 1)|an+1|Rn+1
1

2n|an|Rn
1

= R1 lim
n→∞

n + 1

n
·
∣∣∣∣an+1

an

∣∣∣∣ = R1 · 1 · 1

R
= R1

R
< 1.

Thus, the series M =
∞∑

n=0

2n|an|Rn
1 converges by the Ratio Test.

(c) Suppose |x| < R1 and |y| < R1. Then

|F(x) − F(y)| =
∣∣∣∣∣∣

∞∑
n=0

anxn −
∞∑

n=0

anyn

∣∣∣∣∣∣ ≤
∞∑

n=0

|an||xn − yn| ≤
∞∑

n=0

n|an||x − y|
(
|x|n−1 + |y|n−1

)

≤ |x − y|
∞∑

n=0

n|an|
(
Rn−1

1 + Rn−1
1

)
= M|x − y|

(d) Let |x| < R, and let R1 be a number such that |x| < R1 < R. Then by part (b), M =
∞∑

n=0

2n|an|Rn
1 is finite and by

part (c)

|F (x) − F (y) | ≤ M|x − y|
for |y| < R1. Now, let ε > 0, and choose δ > 0 so that δ <

ε

M
and δ < R1 − |x|. Then, whenever |y − x| < δ,

|y| = | (y − x) + x| ≤ |y − x| + |x| < δ + |x| < R1,

so

|F (x) − F (y) | < M|x − y| < Mδ < M · ε

M
= ε.

Thus, F is continuous at x.

10.7 Taylor Series

Preliminary Questions
1. Determine f (0) and f ′′′(0) for a function f (x) with Maclaurin series

T (x) = 3 + 2x + 12x2 + 5x3 + · · ·
solution The Maclaurin series for a function f has the form

f (0) + f ′ (0)

1! x + f ′′ (0)

2! x2 + f ′′′ (0)

3! x3 + · · ·

Matching this general expression with the given series, we find f (0) = 3 and
f ′′′(0)

3! = 5. From this latter equation, it

follows that f ′′′(0) = 30.

2. Determine f (−2) and f (4)(−2) for a function with Taylor series

T (x) = 3(x + 2) + (x + 2)2 − 4(x + 2)3 + 2(x + 2)4 + · · ·
solution The Taylor series for a function f centered at x = −2 has the form

f (−2) + f ′ (−2)

1! (x + 2) + f ′′ (−2)

2! (x + 2)2 + f ′′′ (−2)

3! (x + 2)3 + f (4)(−2)

4! (x + 2)4 + · · ·

Matching this general expression with the given series, we find f (−2) = 0 and
f (4)(−2)

4! = 2. From this latter equation,

it follows that f (4)(−2) = 48.
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3. What is the easiest way to find the Maclaurin series for the function f (x) = sin(x2)?

solution The easiest way to find the Maclaurin series for sin
(
x2
)

is to substitute x2 for x in the Maclaurin series for

sin x.

4. Find the Taylor series for f (x) centered at c = 3 if f (3) = 4 and f ′(x) has a Taylor expansion

f ′(x) =
∞∑

n=1

(x − 3)n

n

solution Integrating the series for f ′(x) term-by-term gives

f (x) = C +
∞∑

n=1

(x − 3)n+1

n(n + 1)
.

Substituting x = 3 then yields

f (3) = C = 4;
so

f (x) = 4 +
∞∑

n=1

(x − 3)n+1

n(n + 1)
.

5. Let T (x) be the Maclaurin series of f (x). Which of the following guarantees that f (2) = T (2)?

(a) T (x) converges for x = 2.
(b) The remainder Rk(2) approaches a limit as k → ∞.
(c) The remainder Rk(2) approaches zero as k → ∞.

solution The correct response is (c): f (2) = T (2) if and only if the remainder Rk(2) approaches zero as k → ∞.

Exercises
1. Write out the first four terms of the Maclaurin series of f (x) if

f (0) = 2, f ′(0) = 3, f ′′(0) = 4, f ′′′(0) = 12

solution The first four terms of the Maclaurin series of f (x) are

f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 = 2 + 3x + 4

2
x2 + 12

6
x3 = 2 + 3x + 2x2 + 2x3.

2. Write out the first four terms of the Taylor series of f (x) centered at c = 3 if

f (3) = 1, f ′(3) = 2, f ′′(3) = 12, f ′′′(3) = 3

solution The first four terms of the Taylor series centered at c = 3 are:

f (3) + f ′(3)(x − 3) + f ′′(3)

2! (x − 3)2 + f ′′′(3)

3! (x − 3)3 = 1 + 2(x − 3) + 12

2
(x − 3)2 + 3

6
(x − 3)3

= 1 + 2(x − 3) + 6(x − 3)2 + 1

2
(x − 3)3.

In Exercises 3–18, find the Maclaurin series and find the interval on which the expansion is valid.

3. f (x) = 1

1 − 2x

solution Substituting 2x for x in the Maclaurin series for 1
1−x

gives

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn.

This series is valid for |2x| < 1, or |x| < 1
2 .

4. f (x) = x

1 − x4

solution Substituting x4 for x in the Maclaurin series for 1
1−x

gives

1

1 − x4
=

∞∑
n=0

(x4)n =
∞∑

n=0

x4n.
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Therefore

x

1 − x4
= x

∞∑
n=0

x4n =
∞∑

n=0

x4n+1.

This series is valid for |x4| < 1, or |x| < 1.

5. f (x) = cos 3x

solution Substituting 3x for x in the Maclaurin series for cos x gives

cos 3x =
∞∑

n=0

(−1)n
(3x)2n

(2n)! =
∞∑

n=0

(−1)n
9nx2n

(2n)! .

This series is valid for all x.

6. f (x) = sin(2x)

solution Substituting 2x for x in the Maclaurin series for sin x gives

sin 2x =
∞∑

n=0

(−1)n
(2x)2n+1

(2n + 1)! =
∞∑

n=0

(−1)n
22n+1x2n+1

(2n + 1)! .

This series is valid for all x.

7. f (x) = sin(x2)

solution Substituting x2 for x in the Maclaurin series for sin x gives

sin x2 =
∞∑

n=0

(−1)n
(x2)2n+1

(2n + 1)! =
∞∑

n=0

(−1)n
x4n+2

(2n + 1)! .

This series is valid for all x.

8. f (x) = e4x

solution Substituting 4x for x in the Maclaurin series for ex gives

e4x =
∞∑

n=0

(4x)n

n! =
∞∑

n=o

4nxn

n! .

This series is valid for all x.

9. f (x) = ln(1 − x2)

solution Substituting −x2 for x in the Maclaurin series for ln(1 + x) gives

ln(1 − x2) =
∞∑

n=1

(−1)n−1(−x2)n

n
=

∞∑
n=1

(−1)2n−1x2n

n
= −

∞∑
n=1

x2n

n
.

This series is valid for |x| < 1.

10. f (x) = (1 − x)−1/2

solution Substituting −x for x and using a = − 1
2 in the Binomial series gives

(1 − x)−1/2 =
∞∑

n=0

( − 1
2

n

)
(−x)n =

∞∑
n=0

(−1)n
( − 1

2
n

)
xn.

This series is valid for |x| < 1.

11. f (x) = tan−1(x2)

solution Substituting x2 for x in the Maclaurin series for tan−1 x gives

tan−1(x2) =
∞∑

n=0

(−1)n
(x2)2n+1

2n + 1
=

∞∑
n=0

(−1)n
x4n+2

2n + 1
.

This series is valid for |x| ≤ 1.
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12. f (x) = x2ex2

solution First substitute x2 for x in the Maclaurin series for ex to obtain

ex2 =
∞∑

n=0

(x2)n

n! =
∞∑

n=0

x2n

n! .

Now, multiply by x2 to obtain

x2ex2 = x2
∞∑

n=0

x2n

n! =
∞∑

n=0

x2n+2

n! .

This series is valid for all x.

13. f (x) = ex−2

solution ex−2 = e−2ex ; thus,

ex−2 = e−2
∞∑

n=0

xn

n! =
∞∑

n=0

xn

e2n! .

This series is valid for all x.

14. f (x) = 1 − cos x

x

solution cos x =
∞∑

n=0

(−1)n
x2n

(2n)! , so

1 − cos x

x
=

∞∑
n=1

(−1)n+1 x2n−1

(2n)!

This series is valid for all x.

15. f (x) = ln(1 − 5x)

solution Substituting −5x for x in the Maclaurin series for ln(1 + x) gives

ln(1 − 5x) =
∞∑

n=1

(−1)n−1(−5x)n

n
=

∞∑
n=1

(−1)2n−15nxn

n
= −

∞∑
n=1

5nxn

n
.

This series is valid for |5x| < 1, or |x| < 1
5 , and for x = − 1

5 .

16. f (x) = (x2 + 2x)ex

solution Using the Maclaurin series for ex , we find

(x2 + 2x)ex = x2
∞∑

n=0

xn

n! + 2x

∞∑
n=0

xn

n! =
∞∑

n=0

xn+2

n! +
∞∑

n=0

2xn+1

n! = 2x +
∞∑

n=1

(
1

(n − 1)! + 2

n!
)

xn+1

= 2x +
∞∑

n=1

n + 2

n! xn+1 =
∞∑

n=0

n + 2

n! xn+1.

This series is valid for all x.

17. f (x) = sinh x

solution Recall that

sinh x = 1

2
(ex − e−x).

Therefore,

sinh x = 1

2

⎛
⎝ ∞∑

n=0

xn

n! −
∞∑

n=0

(−x)n

n!

⎞
⎠ =

∞∑
n=0

xn

2(n!)
(
1 − (−1)n

)
.
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Now,

1 − (−1)n =
{

0, n even

2, n odd

so

sinh x =
∞∑

k=0

2
x2k+1

2(2k + 1)! =
∞∑

k=0

x2k+1

(2k + 1)! .

This series is valid for all x.

18. f (x) = cosh x

solution Recall that

cosh x = 1

2
(ex + e−x).

Therefore,

cosh x = 1

2

⎛
⎝ ∞∑

n=0

xn

n! +
∞∑

n=0

(−x)n

n!

⎞
⎠ =

∞∑
n=0

xn

2(n!)
(
1 + (−1)n

)
.

Now,

1 + (−1)n =
{

0, n odd

2, n even

so

cosh x =
∞∑

k=0

2
x2k

2(2k)! =
∞∑

k=0

x2k

(2k)! .

This series is valid for all x.

In Exercises 19–28, find the terms through degree four of the Maclaurin series of f (x). Use multiplication and substitution
as necessary.

19. f (x) = ex sin x

solution Multiply the fourth-order Taylor Polynomials for ex and sin x:(
1 + x + x2

2
+ x3

6
+ x4

24

)(
x − x3

6

)

= x + x2 − x3

6
+ x3

2
− x4

6
+ x4

6
+ higher-order terms

= x + x2 + x3

3
+ higher-order terms.

The terms through degree four in the Maclaurin series for f (x) = ex sin x are therefore

x + x2 + x3

3
.

20. f (x) = ex ln(1 − x)

solution Multiply the fourth order Taylor Polynomials for ex and ln(1 − x):(
1 + x + x2

2
+ x3

6
+ x4

24

)(
−x − x2

2
− x3

3
− x4

4

)

= −x − x2

2
− x2 − x3

3
− x3

2
− x3

2
− x4

4
− x4

3
− x4

4
− x4

6
+ higher-order terms

= −x − 3x2

2
− 4x3

3
− x4 + higher-order terms.
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The first four terms of the Maclaurin series for f (x) = ex ln(1 − x) are therefore

−x − 3x2

2
− 4x3

3
− x4.

21. f (x) = sin x

1 − x

solution Multiply the fourth order Taylor Polynomials for sin x and
1

1 − x
:

(
x − x3

6

)(
1 + x + x2 + x3 + x4

)

= x + x2 − x3

6
+ x3 + x4 − x4

6
+ higher-order terms

= x + x2 + 5x3

6
+ 5x4

6
+ higher-order terms.

The terms through order four of the Maclaurin series for f (x) = sin x

1 − x
are therefore

x + x2 + 5x3

6
+ 5x4

6
.

22. f (x) = 1

1 + sin x

solution Substituting sin x for x in the Maclaurin series for 1
1−x

and then using the Maclaurin series for sin x gives

1

1 + sin x
= 1 − sin x + sin2 x − sin3 x + sin4 x − . . .

= 1 −
(

x − x3

6
+ · · ·

)
+
(

x − x3

6
+ · · ·

)2

−
(

x − x3

6
+ . . .

)3

+
(

x − x3

6
+ . . .

)4

· · ·

= 1 − x + x3

6
+ x2 − x4

3
− x3 + x4 = 1 − x + x2 − 5x3

6
+ 2x4

3

Therefore, the terms of the Maclaurin series for f (x) = 1

1 + sin x
through order four are

1 − x + x2 − 5x3

6
+ 2x4

3
.

23. f (x) = (1 + x)1/4

solution The first five generalized binomial coefficients for a = 1
4 are

1,
1

4
,

1
4

(−3
4

)
2! = − 3

32
,

1
4

(−3
4

) (−7
4

)
3! = 7

128
,

1
4

(−3
4

) (−7
4

) (−11
4

)
4! = −77

2048

Therefore, the first four terms in the binomial series for (1 + x)1/4 are

1 + 1

4
x − 3

32
x2 + 7

128
x3 − 77

2048
x4

24. f (x) = (1 + x)−3/2

solution The first five generalized binomial coefficients for a = − 3
2 are

1, −3

2
,

− 3
2 (− 5

2 )

2! = 15

8
,

− 3
2 (− 5

2 )(− 7
2 )

3! = −35

16
,

− 3
2 (− 5

2 )(− 7
2 )(− 9

2 )

4! = 315

128
.

Therefore, the first five terms in the binomial series for f (x) = (1 + x)−3/2 are

1 − 3

2
x + 15

8
x2 − 35

16
x3 + 315

128
x4.



March 31, 2011

1328 C H A P T E R 10 INFINITE SERIES

25. f (x) = ex tan−1 x

solution Using the Maclaurin series for ex and tan−1 x, we find

ex tan−1 x =
(

1 + x + x2

2
+ x3

6
+ · · ·

)(
x − x3

3
+ · · ·

)
= x + x2 − x3

3
+ x3

2
+ x4

6
− x4

3
+ · · ·

= x + x2 + 1

6
x3 − 1

6
x4 + · · · .

26. f (x) = sin (x3 − x)

solution Substitute x3 − x into the first two terms of the Maclaurin series for sin x:

(x3 − x) − (x3 − x)3

3! = x3 − x − x9 − 3x7 + 3x5 − x3

3!
so that the terms of the Maclaurin series for sin(x3 − x) through degree four are

−x + 7

6
x3

27. f (x) = esin x

solution Substituting sin x for x in the Maclaurin series for ex and then using the Maclaurin series for sin x, we find

esin x = 1 + sin x + sin2 x

2
+ sin3 x

6
+ sin4 x

24
+ · · ·

= 1 +
(

x − x3

6
+ · · ·

)
+ 1

2

(
x − x3

6
+ · · ·

)2

+ 1

6
(x − · · · )3 + 1

24
(x − · · · )4

= 1 + x + 1

2
x2 − 1

6
x3 + 1

6
x3 − 1

6
x4 + 1

24
x4 + · · ·

= 1 + x + 1

2
x2 − 1

8
x4 + · · · .

28. f (x) = e(ex)

solution With f (x) = e(ex), we find

f ′(x) = e(ex) · ex

f ′′(x) = e(ex) · ex + e(ex) · e2x = e(ex)
(
e2x + ex

)
f ′′′(x) = e(ex)

(
2e2x + ex

)
+ e(ex)

(
e2x + ex

)
ex

= e(ex)
(
e3x + 3e2x + ex

)
f (4)(x) = e(ex)(3e3x + 6e2x + ex) + e(ex)(e3x + 3e2x + ex)ex

= e(ex)(e4x + 6e3x + 7e2x + ex)

and

f (0) = e, f ′(0) = e, f ′′(0) = 2e, f ′′′(0) = 5e, f (4)(0) = 15e.

Therefore, the first four terms of the Maclaurin for f (x) = e(ex) are

e + ex + ex2 + 5e

6
x3 + 5e

8
x4.
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In Exercises 29–38, find the Taylor series centered at c and find the interval on which the expansion is valid.

29. f (x) = 1

x
, c = 1

solution Write

1

x
= 1

1 + (x − 1)
,

and then substitute −(x − 1) for x in the Maclaurin series for 1
1−x

to obtain

1

x
=

∞∑
n=0

[−(x − 1)]n =
∞∑

n=0

(−1)n(x − 1)n.

This series is valid for |x − 1| < 1.

30. f (x) = e3x , c = −1

solution Write

e3x = e3(x+1)−3 = e−3e3(x+1).

Now, substitute 3(x + 1) for x in the Maclaurin series for ex to obtain

e3(x+1) =
∞∑

n=0

(3(x + 1))n

n! =
∞∑

n=0

3n

n! (x + 1)n.

Thus,

e3x = e−3
∞∑

n=0

3n

n! (x + 1)n =
∞∑

n=0

3ne−3

n! (x + 1)n,

This series is valid for all x.

31. f (x) = 1

1 − x
, c = 5

solution Write

1

1 − x
= 1

−4 − (x − 5)
= −1

4
· 1

1 + x−5
4

.

Substituting − x−5
4 for x in the Maclaurin series for 1

1−x
yields

1

1 + x−5
4

=
∞∑

n=0

(
−x − 5

4

)n

=
∞∑

n=0

(−1)n
(x − 5)n

4n
.

Thus,

1

1 − x
= −1

4

∞∑
n=0

(−1)n
(x − 5)n

4n
=

∞∑
n=0

(−1)n+1 (x − 5)n

4n+1
.

This series is valid for
∣∣∣ x−5

4

∣∣∣ < 1, or |x − 5| < 4.

32. f (x) = sin x, c = π

2
solution Note that the odd derivatives of sin x are zero at π

2 , and the even derivatives alternate between +1 and −1.
Thus the Taylor series centered at π

2 is

∞∑
n=0

(−1)n

(
x − π

2

)2n

(2n)!

33. f (x) = x4 + 3x − 1, c = 2

solution To determine the Taylor series with center c = 2, we compute

f ′(x) = 4x3 + 3, f ′′(x) = 12x2, f ′′′(x) = 24x,

and f (4)(x) = 24. All derivatives of order five and higher are zero. Now,
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f (2) = 21, f ′(2) = 35, f ′′(2) = 48, f ′′′(2) = 48,

and f (4)(2) = 24. Therefore, the Taylor series is

21 + 35(x − 2) + 48

2
(x − 2)2 + 48

6
(x − 2)3 + 24

24
(x − 2)4,

or

21 + 35(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4.

34. f (x) = x4 + 3x − 1, c = 0

solution The function x4 + 3x − 1 is a polynomial in x, hence it is already in the form of a Maclaurin series.

35. f (x) = 1

x2
, c = 4

solution We will first find the Taylor series for 1
x and then differentiate to obtain the series for 1

x2 . Write

1

x
= 1

4 + (x − 4)
= 1

4
· 1

1 + x−4
4

.

Now substitute − x−4
4 for x in the Maclaurin series for 1

1−x
to obtain

1

x
= 1

4

∞∑
n=

(
−x − 4

4

)n

=
∞∑

n=0

(−1)n
(x − 4)n

4n+1
.

Differentiating term-by-term yields

− 1

x2
=

∞∑
n=1

(−1)nn
(x − 4)n−1

4n+1
,

so that

1

x2
=

∞∑
n=1

(−1)n−1n
(x − 4)n−1

4n+1
=

∞∑
n=0

(−1)n(n + 1)
(x − 4)n

4n+2
.

This series is valid for
∣∣∣ x−4

4

∣∣∣ < 1, or |x − 4| < 4.

36. f (x) = √
x, c = 4

solution Write

√
x = √

4 + (x − 4) = 2

√
1 + x − 4

4
.

Substituting x−4
4 for x in the binomial series with a = 1

2 yields

√
x = 2

∞∑
n=0

( 1
2
n

)(
x − 4

4

)n

=
∞∑

n=0

1

22n−1

( 1
2
n

)
(x − 4)n.

This series is valid for
∣∣∣ x−4

4

∣∣∣ < 1, or |x − 4| < 4.

37. f (x) = 1

1 − x2
, c = 3

solution By partial fraction decomposition

1

1 − x2
=

1
2

1 − x
+

1
2

1 + x
,

so

1

1 − x2
=

1
2

−2 − (x − 3)
+

1
2

4 + (x − 3)
= −1

4
· 1

1 + x−3
2

+ 1

8
· 1

1 + x−3
4

.
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Substituting − x−3
2 for x in the Maclaurin series for 1

1−x
gives

1

1 + x−3
2

=
∞∑

n=0

(
−x − 3

2

)n

=
∞∑

n=0

(−1)n

2n
(x − 3)n,

while substituting − x−3
4 for x in the same series gives

1

1 + x−3
4

=
∞∑

n=0

(
−x − 3

4

)n

=
∞∑

n=0

(−1)n

4n
(x − 3)n.

Thus,

1

1 − x2
= −1

4

∞∑
n=0

(−1)n

2n
(x − 3)n + 1

8

∞∑
n=0

(−1)n

4n
(x − 3)n =

∞∑
n=0

(−1)n+1

2n+2
(x − 3)n +

∞∑
n=0

(−1)n

22n+3
(x − 3)n

=
∞∑

n=0

(
(−1)n+1

2n+2
+ (−1)n

22n+3

)
(x − 3)n =

∞∑
n=0

(−1)n+1(2n+1 − 1)

22n+3
(x − 3)n.

This series is valid for |x − 3| < 2.

38. f (x) = 1

3x − 2
, c = −1

solution Write

1

3x − 2
= 1

−5 + 3(x + 1)
= −1

5

1

1 − 3(x+1)
5

,

and then substitute 3(x+1)
5 for x in the Maclaurin series for 1

1−x
to obtain

1

1 − 3(x+1)
5

=
∞∑

n=0

(
3(x + 1)

5

)n

=
∞∑

n=0

3n

5n
(x + 1)n.

Thus,

1

3x − 2
= −

∞∑
n=0

3n

5n+1
(x + 1)n.

This series is valid for
∣∣∣ 3(x+1)

5

∣∣∣ < 1, or |x + 1| < 5
3 .

39. Use the identity cos2 x = 1
2 (1 + cos 2x) to find the Maclaurin series for cos2 x.

solution The Maclaurin series for cos 2x is

∞∑
n=0

(−1)n
(2x)2n

(2n)! =
∞∑

n=0

(−1)n
22nx2n

(2n)!

so the Maclaurin series for cos2 x = 1
2 (1 + cos 2x) is

1 +
(

1 + ∑∞
n=1(−1)n 22nx2n

(2n)!
)

2
= 1 +

∞∑
n=1

(−1)n
22n−1x2n

(2n)!

40. Show that for |x| < 1,

tanh−1 x = x + x3

3
+ x5

5
+ · · ·

Hint: Recall that
d

dx
tanh−1 x = 1

1 − x2
.

solution Because

d

dx
tanh−1 x = 1

1 − x2
=

∞∑
n=0

(x2)n =
∞∑

n=0

x2n,
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we have

tanh−1 x = C +
∞∑

n=0

x2n+1

2n + 1
= C + x + x3

3
+ x5

5
+ · · · .

Now, tanh−1 0 = 0, so it follows that C = 0, and

tanh−1 x =
∞∑

n=0

x2n+1

2n + 1
= x + x3

3
+ x5

5
+ · · · .

41. Use the Maclaurin series for ln(1 + x) and ln(1 − x) to show that

1

2
ln

(
1 + x

1 − x

)
= x + x3

3
+ x5

5
+ · · ·

for |x| < 1. What can you conclude by comparing this result with that of Exercise 40?

solution Using the Maclaurin series for ln (1 + x) and ln (1 − x), we have for |x| < 1

ln(1 + x) − ln(1 − x) =
∞∑

n=1

(−1)n−1

n
xn −

∞∑
n=1

(−1)n−1

n
(−x)n

=
∞∑

n=1

(−1)n−1

n
xn +

∞∑
n=1

xn

n
=

∞∑
n=1

1 + (−1)n−1

n
xn.

Since 1 + (−1)n−1 = 0 for even n and 1 + (−1)n−1 = 2 for odd n,

ln (1 + x) − ln (1 − x) =
∞∑

k=0

2

2k + 1
x2k+1.

Thus,

1

2
ln

(
1 + x

1 − x

)
= 1

2
(ln(1 + x) − ln(1 − x)) = 1

2

∞∑
k=0

2

2k + 1
x2k+1 =

∞∑
k=0

x2k+1

2k + 1
.

Observe that this is the same series we found in Exercise 40; therefore,

1

2
ln

(
1 + x

1 − x

)
= tanh−1 x.

42. Differentiate the Maclaurin series for
1

1 − x
twice to find the Maclaurin series of

1

(1 − x)3
.

solution Differentiating the Maclaurin series for
1

1 − x
term-by-term, we obtain

1

(1 − x)2
=

∞∑
n=1

nxn−1.

Differentiating again then yields

2

(1 − x)3
=

∞∑
n=2

n(n − 1)xn−2,

so that

1

(1 − x)3
=

∞∑
n=2

n(n − 1)

2
xn−2 =

∞∑
n=0

(n + 2)(n + 1)

2
xn.

43. Show, by integrating the Maclaurin series for f (x) = 1√
1 − x2

, that for |x| < 1,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
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solution From Example 10, we know that for |x| < 1

1√
1 − x2

=
∞∑

n=0

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n = 1 +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n,

so, for |x| < 1,

sin−1 x =
∫

dx√
1 − x2

= C + x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

Since sin−1 0 = 0, we find that C = 0. Thus,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

44. Use the first five terms of the Maclaurin series in Exercise 43 to approximate sin−1 1
2 . Compare the result with the

calculator value.

solution From Exercise 43 we know that for |x| < 1,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

The first five terms of the series are:

x + 1

2

x3

3
+ 1 · 3

2 · 4

x5

5
+ 1 · 3 · 5

2 · 4 · 6

x7

7
+ 1 · 3 · 5 · 7

2 · 4 · 6 · 8

x9

9
= x + x3

6
+ 3x5

40
+ 5x7

112
+ 35x9

1152

Setting x = 1

2
, we obtain the following approximation:

sin−1 1

2
≈ 1

2
+

(
1
2

)3

6
+

3 ·
(

1
2

)5

40
+

5 ·
(

1
2

)7

112
+

35 ·
(

1
2

)9

1152
≈ 0.52358519539.

The calculator value is sin−1 1
2 ≈ 0.5235988775.

45. How many terms of the Maclaurin series of f (x) = ln(1 + x) are needed to compute ln 1.2 to within an error of at
most 0.0001? Make the computation and compare the result with the calculator value.

solution Substitute x = 0.2 into the Maclaurin series for ln (1 + x) to obtain:

ln 1.2 =
∞∑

n=1

(−1)n−1 (0.2)n

n
=

∞∑
n=1

(−1)n−1 1

5nn
.

This is an alternating series with an = 1

n · 5n
. Using the error bound for alternating series

|ln 1.2 − SN | ≤ aN+1 = 1

(N + 1)5N+1
,

so we must choose N so that

1

(N + 1)5N+1
< 0.0001 or (N + 1)5N+1 > 10,000.

For N = 3, (N + 1)5N+1 = 4 · 54 = 2500 < 10, 000, and for N = 4, (N + 1)5N+1 = 5 · 55 = 15, 625 > 10, 000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is:

S4 =
4∑

n=1

(−1)n−1

5n · n
= 1

5
− 1

52 · 2
+ 1

53 · 3
− 1

54 · 4
= 0.182266666.

Now, ln 1.2 = 0.182321556, so

|ln 1.2 − S4| = 5.489 × 10−5 < 0.0001.
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46. Show that

π − π3

3! + π5

5! − π7

7! + · · ·

converges to zero. How many terms must be computed to get within 0.01 of zero?

solution Set x = π in the Maclaurin series for sin x to obtain:

0 = sin π = π − π3

3! + π5

5! − π7

7! + · · · .

Using the error bound for an alternating series, we have∣∣∣∣∣∣0 −
N∑

n=0

(−1)nπ2n+1

(2n + 1)!

∣∣∣∣∣∣ ≤ π2N+3

(2N + 3)! .

N = 4 is the smallest value for which the error bound is less than 0.01, so five terms are needed.

47. Use the Maclaurin expansion for e−t2
to express the function F(x) = ∫ x

0 e−t2
dt as an alternating power series in x

(Figure 4).

(a) How many terms of the Maclaurin series are needed to approximate the integral for x = 1 to within an error of at
most 0.001?

(b) Carry out the computation and check your answer using a computer algebra system.

F(x)

T15(x)

1 2

y

x

FIGURE 4 The Maclaurin polynomial T15(x) for F(t) =
∫ x

0
e−t2

dt.

solution Substituting −t2 for t in the Maclaurin series for et yields

e−t2 =
∞∑

n=0

(−t2)n

n! =
∞∑

n=0

(−1)n
t2n

n! ;

thus, ∫ x

0
e−t2

dt =
∞∑

n=0

(−1)n
x2n+1

n!(2n + 1)
.

(a) For x = 1, ∫ 1

0
e−t2

dt =
∞∑

n=0

(−1)n
1

n!(2n + 1)
.

This is an alternating series with an = 1
n!(2n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
e−t2

dt − SN

∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)!(2N + 3)
.

To guarantee the error is at most 0.001, we must choose N so that

1

(N + 1)!(2N + 3)
< 0.001 or (N + 1)!(2N + 3) > 1000.

For N = 3, (N + 1)!(2N + 3) = 4! · 9 = 216 < 1000 and for N = 4, (N + 1)!(2N + 3) = 5! · 11 = 1320 > 1000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is

S4 =
4∑

n=0

(−1)n

n!(2n + 1)
= 1 − 1

3
+ 1

2! · 5
− 1

3! · 7
+ 1

4! · 9
= 0.747486772.
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(b) Using a computer algebra system, we find∫ 1

0
e−t2

dt = 0.746824133;

therefore ∣∣∣∣∣
∫ 1

0
e−t2

dt − S4

∣∣∣∣∣ = 6.626 × 10−4 < 10−3.

48. Let F(x) =
∫ x

0

sin t dt

t
. Show that

F(x) = x − x3

3 · 3! + x5

5 · 5! − x7

7 · 7! + · · ·

Evaluate F(1) to three decimal places.

solution Divide the Maclaurin series for sin t by t to obtain

sin t

t
= 1

t

∞∑
n=0

(−1)n
t2n+1

(2n + 1)! =
∞∑

n=0

(−1)n
t2n

(2n + 1)! .

Integrating both sides of this equation and using term-by-term integration, we find

F(x) =
∫ x

0

sin t

t
dt =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!(2n + 1)
= x − x3

3 · 3! + x5

5 · 5! − x7

7 · 7! + · · ·

For x = 1,

F(1) =
∞∑

n=0

(−1)n
1

(2n + 1)!(2n + 1)
.

This is an alternating series with an = 1
(2n+1)!(2n+1)

; therefore, the error incurred by using SN to approximate the value
of the definite integral is bounded by∣∣∣∣∣

∫ 1

0

sin t

t
dt − SN

∣∣∣∣∣ ≤ aN+1 = 1

(2N + 3)!(2N + 3)
.

To guarantee the error is at most 0.0005, we must choose N so that

1

(2N + 3)!(2N + 3)
< 0.0005 or (2N + 3)!(2N + 3) > 2000.

For N = 1, (2N + 3)!(2N + 3) = 5! · 5 = 600 < 2000 and for N = 2, (2N + 3)!(2N + 3) = 7! · 7 = 35,280 > 2000;
thus, the smallest acceptable value for N is N = 2. The corresponding approximation is

S2 =
2∑

n=0

(−1)n

(2n + 1)!(2n + 1)
= 1 − 1

3 · 3! + 1

5 · 5! = 0.946111111.

In Exercises 49–52, express the definite integral as an infinite series and find its value to within an error of at most 10−4.

49.
∫ 1

0
cos(x2) dx

solution Substituting x2 for x in the Maclaurin series for cos x yields

cos(x2) =
∞∑

n=0

(−1)n
(x2)2n

(2n)! =
∞∑

n=0

(−1)n
x4n

(2n)! ;

therefore,

∫ 1

0
cos(x2) dx =

∞∑
n=0

(−1)n
x4n+1

(2n)!(4n + 1)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

(2n)!(4n + 1)
.
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This is an alternating series with an = 1
(2n)!(4n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
cos(x2) dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(2N + 2)!(4N + 5)
.

To guarantee the error is at most 0.0001, we must choose N so that

1

(2N + 2)!(4N + 5)
< 0.0001 or (2N + 2)!(4N + 5) > 10,000.

For N = 2, (2N + 2)!(4N + 5) = 6! · 13 = 9360 < 10,000 and for N = 3, (2N + 2)!(4N + 5) = 8! · 17 = 685,440 >

10,000; thus, the smallest acceptable value for N is N = 3. The corresponding approximation is

S3 =
3∑

n=0

(−1)n

(2n)!(4n + 1)
= 1 − 1

5 · 2! + 1

9 · 4! − 1

13 · 6! = 0.904522792.

50.
∫ 1

0
tan−1(x2) dx

solution Substituting x2 for x in the Maclaurin series for tan−1 x yields

tan−1(x2) =
∞∑

n=0

(−1)n
(x2)2n+1

2n + 1
=

∞∑
n=0

(−1)n
x4n+2

2n + 1
;

therefore,

∫ 1

0
tan−1(x2) dx =

∞∑
n=0

(−1)n
x4n+3

(2n + 1)(4n + 3)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

(2n + 1)(4n + 3)
.

This is an alternating series with an = 1
(2n+1)(4n+3)

; therefore, the error incurred by using SN to approximate the value
of the definite integral is bounded by∣∣∣∣∣

∫ 1

0
tan−1(x2) dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(2N + 3)(4N + 7)
.

To guarantee the error is at most 0.0001, we must choose N so that

1

(2N + 3)(4N + 7)
< 0.0001 or (2N + 3)(4N + 7) > 10,000.

For N = 33, (2N + 3)(4N + 7) = (69)(139) = 9591 < 10,000 and for N = 34, (2N + 3)(4N + 7) = (71)(143) =
10,153 > 10,000; thus, the smallest acceptable value for N is N = 34. The corresponding approximation is

S34 =
34∑

n=0

(−1)n

(2n)!(4n + 1)
= 0.297953297.

51.
∫ 1

0
e−x3

dx

solution Substituting −x3 for x in the Maclaurin series for ex yields

e−x3 =
∞∑

n=0

(−x3)n

n! =
∞∑

n=0

(−1)n
x3n

n! ;

therefore,

∫ 1

0
e−x3

dx =
∞∑

n=0

(−1)n
x3n+1

n!(3n + 1)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

n!(3n + 1)
.

This is an alternating series with an = 1
n!(3n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
e−x3

dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)!(3N + 4)
.
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To guarantee the error is at most 0.0001, we must choose N so that

1

(N + 1)!(3N + 4)
< 0.0001 or (N + 1)!(3N + 4) > 10,000.

For N = 4, (N + 1)!(3N + 4) = 5! · 16 = 1920 < 10,000 and for N = 5, (N + 1)!(3N + 4) = 6! · 19 = 13,680 >

10,000; thus, the smallest acceptable value for N is N = 5. The corresponding approximation is

S5 =
5∑

n=0

(−1)n

n!(3n + 1)
= 0.807446200.

52.
∫ 1

0

dx√
x4 + 1

solution From Example 10, we know that for |x| < 1

1√
1 − x2

=
∞∑

n=0

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n =

∞∑
n=0

(2n)!
22n(n!)2

x2n;

therefore,

1√
x4 + 1

=
∞∑

n=0

(2n)!
22n(n!)2

(−x2)2n =
∞∑

n=0

(−1)n
(2n)!

22n(n!)2
x4n,

and

∫ 1

0

dx√
x4 + 1

=
∞∑

n=0

(−1)n
(2n)!

22n(n!)2

x4n+1

4n + 1

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n
(2n)!

22n(4n + 1)(n!)2
.

This is an alternating series with

an = (2n)!
22n(4n + 1)(n!)2

;

therefore, the error incurred by using SN to approximate the value of the definite integral is bounded by∣∣∣∣∣
∫ 1

0

dx√
x4 + 1

− SN

∣∣∣∣∣ ≤ aN+1 = (2N + 2)!
22N+2(4N + 5)((N + 1)!)2

.

To guarantee the error is at most 0.0001, we must choose N so that

(2N + 2)!
22N+2(4N + 5)((N + 1)!)2

< 0.0001.

For N = 124,

(2N + 2)!
22N+2(4N + 5)((N + 1)!)2

= 0.0001006 > 0.0001,

and for N = 125,

(2N + 2)!
22N+2(4N + 5)((N + 1)!)2

= 0.00009943 < 0.0001,

thus, the smallest acceptable value for N is N = 125. The corresponding approximation is

S125 =
125∑
n=0

(−1)n
(2n)!

22n(4n + 1)(n!)2
= 0.926987328.

In Exercises 53–56, express the integral as an infinite series.

53.
∫ x

0

1 − cos(t)

t
dt , for all x

solution The Maclaurin series for cos t is

cos t =
∞∑

n=0

(−1)n
t2n

(2n)! = 1 +
∞∑

n=1

(−1)n
t2n

(2n)! ,
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so

1 − cos t = −
∞∑

n=1

(−1)n
t2n

(2n)! =
∞∑

n=1

(−1)n+1 t2n

(2n)! ,

and

1 − cos t

t
= 1

t

∞∑
n=1

(−1)n+1 t2n

(2n)! =
∞∑

n=1

(−1)n+1 t2n−1

(2n)! .

Thus,

∫ x

0

1 − cos(t)

t
dt =

∞∑
n=1

(−1)n+1 t2n

(2n)!2n

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n+1 x2n

(2n)!2n
.

54.
∫ x

0

t − sin t

t
dt , for all x

solution The Maclaurin series for sin t is

sin t =
∞∑

n=0

(−1)n
t2n+1

(2n + 1)! = t +
∞∑

n=1

(−1)n
t2n+1

(2n + 1)! ,

so

t − sin t = −
∞∑

n=1

(−1)n
t2n+1

(2n + 1)! =
∞∑

n=1

(−1)n+1 t2n+1

(2n + 1)! ,

and

t − sin t

t
= 1

t

∞∑
n=1

(−1)n+1 t2n+1

(2n + 1)! =
∞∑

n=1

(−1)n+1 t2n

(2n + 1)! .

Thus,

∫ x

0

t − sin(t)

t
dt =

∞∑
n=1

(−1)n+1 t2n+1

(2n + 1)!(2n + 1)

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n+1 x2n+1

(2n + 1)!(2n + 1)
.

55.
∫ x

0
ln(1 + t2) dt , for |x| < 1

solution Substituting t2 for t in the Maclaurin series for ln(1 + t) yields

ln(1 + t2) =
∞∑

n=1

(−1)n−1 (t2)n

n
=

∞∑
n=1

(−1)n
t2n

n
.

Thus,

∫ x

0
ln(1 + t2) dt =

∞∑
n=1

(−1)n
t2n+1

n(2n + 1)

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n
x2n+1

n(2n + 1)
.

56.
∫ x

0

dt√
1 − t4

, for |x| < 1

solution From Example 10, we know that for |t | < 1

1√
1 − t2

=
∞∑

n=0

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
t2n =

∞∑
n=0

(2n)!
22n(n!)2

t2n;

therefore,

1√
1 − t4

=
∞∑

n=0

(2n)!
22n(n!)2

(t2)2n =
∞∑

n=0

(2n)!
22n(n!)2

t4n,
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and ∫ x

0

dt√
1 − t4

=
∞∑

n=0

(2n)!
22n(n!)2

t4n+1

4n + 1

∣∣∣∣∣
x

0

=
∞∑

n=0

(2n)!
22n(n!)2

x4n+1

4n + 1
.

57. Which function has Maclaurin series
∞∑

n=0

(−1)n2nxn?

solution We recognize that

∞∑
n=0

(−1)n2nxn =
∞∑

n=0

(−2x)n

is the Maclaurin series for 1
1−x

with x replaced by −2x. Therefore,

∞∑
n=0

(−1)n2nxn = 1

1 − (−2x)
= 1

1 + 2x
.

58. Which function has Maclaurin series

∞∑
k=0

(−1)k

3k+1
(x − 3)k?

For which values of x is the expansion valid?

solution Write the series as

∞∑
k=0

(−1)k

3k+1
(x − 3)k = 1

3

∞∑
k=0

(
−x − 3

3

)k

,

which we recognize as 1
3 times the Maclaurin series for 1

1−x
with x replaced by − x−3

3 . Therefore,

∞∑
k=0

(−1)k

3k+1
(x − 3)k = 1

3
· 1

1 + x−3
3

= 1

3 + x − 3
= 1

x
.

The series is valid for
∣∣∣ x−3

3

∣∣∣ < 1, or |x − 3| < 3.

In Exercises 59–62, use Theorem 2 to prove that the f (x) is represented by its Maclaurin series on the interval I .

59. f (x) = sin
(
x
2

) + cos
(
x
3

)
,

solution All derivatives of f (x) consist of sin or cos applied to each of x/2 and x/3 and added together, so each

summand is bounded by 1. Thus
∣∣∣f (n)(x)

∣∣∣ ≤ 2 for all n and x. By Theorem 2, f (x) is represented by its Taylor series for
every x.

60. f (x) = e−x ,

solution For any c, choose any R > 0 and consider the interval (c − R, c + R). For f (x) = e−x , we have∣∣∣f (n)(x)

∣∣∣ = ∣∣(−1)ne−x
∣∣ = e−x

and on (c − R, c + R), e−x is bounded above by e−(c−R) = eR−c. Thus all derivatives of f (x) are bounded by eR−c

for any x ∈ (c − R, c + R), so by Theorem 2, f (x) is represented by its Taylor series centered at c.

61. f (x) = sinh x,

solution By definition, sinh x = 1
2 (ex − e−x), so if both ex and e−x are represented by their Taylor series centered

at c, then so is sinh x. But the previous exercise shows that e−x is so represented, and the text shows that ex is.

62. f (x) = (1 + x)100

solution f (x) is a polynomial, so it is equal to its Taylor series and thus is obviously represented by its Taylor series.
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In Exercises 63–66, find the functions with the following Maclaurin series (refer to Table 1 on page 599).

63. 1 + x3 + x6

2! + x9

3! + x12

4! + · · ·
solution We recognize

1 + x3 + x6

2! + x9

3! + x12

4! + · · · =
∞∑

n=0

x3n

n! =
∞∑

n=0

(x3)n

n!

as the Maclaurin series for ex with x replaced by x3. Therefore,

1 + x3 + x6

2! + x9

3! + x12

4! + · · · = ex3
.

64. 1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · ·
solution We recognize

1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · · =
∞∑

n=0

(−4x)n

as the Maclaurin series for 1
1−x

with x replaced by −4x. Therefore,

1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · · = 1

1 − (−4x)
= 1

1 + 4x
.

65. 1 − 53x3

3! + 55x5

5! − 57x7

7! + · · ·
solution Note

1 − 53x3

3! + 55x5

5! − 57x7

7! + · · · = 1 − 5x +
(

5x − 53x3

3! + 55x5

5! − 57x7

7! + · · ·
)

= 1 − 5x +
∞∑

n=0

(−1)n
(5x)2n+1

(2n + 1)! .

The series is the Maclaurin series for sin x with x replaced by 5x, so

1 − 53x3

3! + 55x5

5! − 57x7

7! + · · · = 1 − 5x + sin(5x).

66. x4 − x12

3
+ x20

5
− x28

7
+ · · ·

solution We recognize

x4 − x12

3
+ x20

5
− x28

7
+ · · · =

∞∑
n=0

(−1)n
(x4)2n+1

2n + 1

as the Maclaurin series for tan−1 x with x replaced by x4. Therefore,

x4 − x12

3
+ x20

5
− x28

7
+ · · · = tan−1(x4).

In Exercises 67 and 68, let

f (x) = 1

(1 − x)(1 − 2x)

67. Find the Maclaurin series of f (x) using the identity

f (x) = 2

1 − 2x
− 1

1 − x
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solution Substituting 2x for x in the Maclaurin series for
1

1 − x
gives

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn

which is valid for |2x| < 1, or |x| < 1
2 . Because the Maclaurin series for

1

1 − x
is valid for |x| < 1, the two series

together are valid for |x| < 1
2 . Thus, for |x| < 1

2 ,

1

(1 − 2x)(1 − x)
= 2

1 − 2x
− 1

1 − x
= 2

∞∑
n=0

2nxn −
∞∑

n=0

xn

=
∞∑

n=0

2n+1xn −
∞∑

n=0

xn =
∞∑

n=0

(
2n+1 − 1

)
xn.

68. Find the Taylor series for f (x) at c = 2. Hint: Rewrite the identity of Exercise 67 as

f (x) = 2

−3 − 2(x − 2)
− 1

−1 − (x − 2)

solution Using the given identity,

f (x) = 2

−3 − 2(x − 2)
− 1

−1 − (x − 2)
= −2

3

1

1 + 2
3 (x − 2)

+ 1

1 + (x − 2)
.

Substituting − 2
3 (x − 2) for x in the Maclaurin series for 1

1−x
yields

1

1 + 2
3 (x − 2)

=
∞∑

n=0

(−1)n
(

2

3

)n

(x − 2)n,

and substituting −(x − 2) for x in the same Maclaurin series yields

1

1 + (x − 2)
=

∞∑
n=0

(−1)n(x − 2)n.

The first series is valid for
∣∣∣− 2

3 (x − 2)

∣∣∣ < 1, or |x − 2| < 3
2 , and the second series is valid for |x − 2| < 1; therefore, the

two series together are valid for |x − 2| < 1. Finally, for |x − 2| < 1,

f (x) = −2

3

∞∑
n=0

(−1)n
(

2

3

)n

(x − 2)n +
∞∑

n=0

(−1)n(x − 2)n =
∞∑

n=0

(−1)n

[
1 −

(
2

3

)n+1
]

(x − 2)n.

69. When a voltage V is applied to a series circuit consisting of a resistor R and an inductor L, the current at time t is

I (t) =
(

V

R

) (
1 − e−Rt/L

)

Expand I (t) in a Maclaurin series. Show that I (t) ≈ V t

L
for small t .

solution Substituting −Rt
L

for t in the Maclaurin series for et gives

e−Rt/L =
∞∑

n=0

(
−Rt

L

)n

n! =
∞∑

n=0

(−1)n

n!
(

R

L

)n

tn = 1 +
∞∑

n=1

(−1)n

n!
(

R

L

)n

tn

Thus,

1 − e−Rt/L = 1 −
⎛
⎝1 +

∞∑
n=1

(−1)n

n!
(

R

L

)n

tn

⎞
⎠ =

∞∑
n=1

(−1)n+1

n!
(

Rt

L

)n

,

and

I (t) = V

R

∞∑
n=1

(−1)n+1

n!
(

Rt

L

)n

= V t

L
+ V

R

∞∑
n=2

(−1)n+1

n!
(

Rt

L

)n

.
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If t is small, then we can approximate I (t) by the first (linear) term, and ignore terms with higher powers of t ; then we
find

V (t) ≈ V t

L
.

70. Use the result of Exercise 69 and your knowledge of alternating series to show that

V t

L

(
1 − R

2L
t

)
≤ I (t) ≤ V t

L
(for all t)

solution Since the series for I (t) is an alternating series, we know that the true value lies between any two successive
partial sums. Since the term for n = 2 is negative, we have

S2 ≤ I (t) ≤ S1 for all t

Clearly S1 = V t
L

, and

S2 = V t

L
+ V

R

(
−1

n! · R2t2

L2

)
= V t

L
− V R2t2

2RL2
= V t

L

(
1 − R

2L
t

)

71. Find the Maclaurin series for f (x) = cos(x3) and use it to determine f (6)(0).

solution The Maclaurin series for cos x is

cos x =
∞∑

n=0

(−1)n
x2n

(2n)!

Substituting x3 for x gives

cos(x3) =
∞∑

n=0

(−1)n
x6n

(2n)!

Now, the coefficient of x6 in this series is

− 1

2! = −1

2
= f (6)(0)

6!
so

f (6)(0) = −6!
2

= −360

72. Find f (7)(0) and f (8)(0) for f (x) = tan−1 x using the Maclaurin series.

solution The Maclaurin series for f (x) = tan−1x is:

∞∑
n=0

(−1)n
x2n+1

2n + 1
.

The coefficient of x7 in this series is

(−1)3

7
= −1

7
= f (7)(0)

7! ,

so

f (7)(0) = −7!
7

= −6! = −720.

The coefficient of x8 is 0, so f (8)(0) = 0.

73. Use substitution to find the first three terms of the Maclaurin series for f (x) = ex20
. How does the result

show that f (k)(0) = 0 for 1 ≤ k ≤ 19?

solution Substituting x20 for x in the Maclaurin series for ex yields

ex20 =
∞∑

n=0

(x20)n

n! =
∞∑

n=0

x20n

n! ;



March 31, 2011

S E C T I O N 10.7 Taylor Series 1343

the first three terms in the series are then

1 + x20 + 1

2
x40.

Recall that the coefficient of xk in the Maclaurin series for f is f (k)(0)
k! . For 1 ≤ k ≤ 19, the coefficient of xk in the

Maclaurin series for f (x) = ex20
is zero; it therefore follows that

f (k)(0)

k! = 0 or f (k)(0) = 0

for 1 ≤ k ≤ 19.

74. Use the binomial series to find f (8)(0) for f (x) =
√

1 − x2.

solution We obtain the Maclaurin series for f (x) =
√

1 − x2 by substituting −x2 for x in the binomial series with

a = 1
2 . This gives

√
1 − x2 =

∞∑
n=0

( 1
2
n

)(
−x2

)n =
∞∑

n=0

(−1)n
( 1

2
n

)
x2n.

The coefficient of x8 is

(−1)4
( 1

2
4

)
=

1
2

(
1
2 − 1

) (
1
2 − 2

) (
1
2 − 3

)
4! = − 15

16 · 4! = f (8)(0)

8! ,

so

f (8) (0) = −15 · 8!
16 · 4! = −1575.

75. Does the Maclaurin series for f (x) = (1 + x)3/4 converge to f (x) at x = 2? Give numerical evidence to support
your answer.

solution The Taylor series for f (x) = (1 + x)3/4 converges to f (x) for |x| < 1; because x = 2 is not contained on
this interval, the series does not converge to f (x) at x = 2. The graph below displays

SN =
N∑

n=0

( 3
4
n

)
2n

for 0 ≤ N ≤ 14. The divergent nature of the sequence of partial sums is clear.

0
2 14106 8 124

5

10

15

−20

−15

−10

−5

SN

N

76. Explain the steps required to verify that the Maclaurin series for f (x) = ex converges to f (x) for all x.

solution To show that the Maclaurin series for ex converges to ex for all x, we show that for any real number c,
the Maclaurin series converges to ex on an interval containing c. To do this, it suffices to show that for any interval
I = (−R, R), the Maclaurin series for ex converges to ex on I , since each real number is contained in some such interval.
By Theorem 2, it suffices to show that there is a number K that bounds all derivatives of ex for all numbers in the interval
(−R, R). But each derivative of ex is also ex , so it suffices to show that there is a number K that bounds ex for all
x ∈ (−R, R). But ex is an increasing function, so that ex < eR for all x ∈ (−R, R). Thus K = eR is the bound we want.
Theorem 2 then assures us that the Maclaurin series for ex converges to ex on I .

77. Let f (x) = √
1 + x.

(a) Use a graphing calculator to compare the graph of f with the graphs of the first five Taylor polynomials for f . What
do they suggest about the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f is valid for x = 1 and x = −1.
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solution

(a) The five first terms of the Binomial series with a = 1
2 are

√
1 + x = 1 + 1

2
x +

1
2

(
1
2 − 1

)
2! x2 +

1
2

(
1
2 − 1

) (
1
2 − 2

)
3! x3 +

1
2

(
1
2 − 1

) (
1
2 − 2

) (
1
2 − 3

)
4! x4 + · · ·

= 1 + 1

2
x − 1

8
x2 + 9

4
x3 − 45

2
x4 + · · ·

Therefore, the first five Taylor polynomials are

T0(x) = 1;

T1(x) = 1 + 1

2
x;

T2(x) = 1 + 1

2
x − 1

8
x2;

T3(x) = 1 + 1

2
x − 1

8
x2 + 1

8
x3;

T4(x) = 1 + 1

2
x − 1

8
x2 + 1

8
x3 − 5

128
x4.

The figure displays the graphs of these Taylor polynomials, along with the graph of the function f (x) = √
1 + x, which

is shown in red.

–1 0.5 0.5 1

1.5

1

1.5

The graphs suggest that the interval of convergence for the Taylor series is −1 < x < 1.

(b) Using a computer algebra system to calculate SN =
N∑

n=0

( 1
2
n

)
xn for x = 1 we find

S10 = 1.409931183, S100 = 1.414073048, S1000 = 1.414209104,

which appears to be converging to
√

2 as expected. At x = −1 we calculate SN =
N∑

n=0

( 1
2
n

)
· (−1)n, and find

S10 = 0.176197052, S100 = 0.056348479, S1000 = 0.017839011,

which appears to be converging to zero, though slowly.

78. Use the first five terms of the Maclaurin series for the elliptic function E(k) to estimate the period T of a 1-meter
pendulum released at an angle θ = π

4 (see Example 11).

solution The period T of a pendulum of length L released from an angle θ is

T = 4

√
L

g
E(k),

where g ≈ 9.8 m/s2 is the acceleration due to gravity, E(k) is the elliptic function of the first kind and k = sin θ
2 . From

Example 11, we know that

E(k) = π

2

∞∑
n=0

(
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

)2
k2n.

With θ = π
4 ,

k = sin
π

8
=

√
2 − √

2

2
,
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and using the first five terms of the series for E(k), we find

E
(

sin
π

8

)
≈ π

2

(
1 +

(
1

2

)2
sin2 π

8
+
(

1 · 3

2 · 4

)2
sin4 π

8
+
(

1 · 3 · 5

2 · 4 · 6

)2
sin6 π

8
+
(

1 · 3 · 5 · 7

2 · 4 · 6 · 8

)2
sin8 π

8

)

= 1.633578996

Therefore,

T ≈ 4

√
1

9.8
· 1.633578996 = 2.09 seconds.

79. Use Example 11 and the approximation sin x ≈ x to show that the period T of a pendulum released at an angle θ has
the following second-order approximation:

T ≈ 2π

√
L

g

(
1 + θ2

16

)

solution The period T of a pendulum of length L released from an angle θ is

T = 4

√
L

g
E(k),

where g ≈ 9.8 m/s2 is the acceleration due to gravity, E(k) is the elliptic function of the first kind and k = sin θ
2 . From

Example 11, we know that

E(k) = π

2

∞∑
n=0

(
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

)2
k2n.

Using the approximation sin x ≈ x, we have

k = sin
θ

2
≈ θ

2
;

moreover, using the first two terms of the series for E(k), we find

E(k) ≈ π

2

[
1 +

(
1

2

)2 ( θ

2

)2
]

= π

2

(
1 + θ2

16

)
.

Therefore,

T = 4

√
L

g
E(k) ≈ 2π

√
L

g

(
1 + θ2

16

)
.

In Exercises 80–83, find the Maclaurin series of the function and use it to calculate the limit.

80. lim
x→0

cos x − 1 + x2

2

x4

solution Using the Maclaurin series for cos x, we find

cos x =
∞∑

n=0

(−1)n
x2n

(2n)! = 1 − x2

2
+ x4

24
+

∞∑
n=3

(−1)n
x2n

(2n)! .

Thus,

cos x − 1 + x2

2
= x4

24
+

∞∑
n=3

(−1)n
x2n

(2n)!

and

cos x − 1 + x2

2

x4
= 1

24
+

∞∑
n=3

(−1)n
x2n−4

(2n)!
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Note that the radius of convergence for this series is infinite, and recall from the previous section that a convergent power
series is continuous within its radius of convergence. Thus to calculate the limit of this power series as x → 0 it suffices
to evaluate it at x = 0:

lim
x→0

cos x − 1 + x2

2

x4
= lim

x→0

⎛
⎝ 1

24
+

∞∑
n=3

(−1)n
x2n−4

(2n)!

⎞
⎠ = 1

24
+ 0 = 1

24
.

81. lim
x→0

sin x − x + x3

6
x5

solution Using the Maclaurin series for sin x, we find

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! = x − x3

6
+ x5

120
+

∞∑
n=3

(−1)n
x2n+1

(2n + 1)! .

Thus,

sin x − x + x3

6
= x5

120
+

∞∑
n=3

(−1)n
x2n+1

(2n + 1)!

and

sin x − x + x3

6
x5 = 1

120
+

∞∑
n=3

(−1)n
x2n−4

(2n + 1)!

Note that the radius of convergence for this series is infinite, and recall from the previous section that a convergent power
series is continuous within its radius of convergence. Thus to calculate the limit of this power series as x → 0 it suffices
to evaluate it at x = 0:

lim
x→0

sin x − x + x3

6
x5 = lim

x→0

⎛
⎝ 1

120
+

∞∑
n=3

(−1)n
x2n−4

(2n + 1)!

⎞
⎠ = 1

120
+ 0 = 1

120

82. lim
x→0

tan−1 x − x cos x − 1
6x3

x5

solution Start with the Maclaurin series for tan−1 x and cos x:

tan−1 x =
∞∑

n=0

(−1)n
x2n+1

2n + 1
cos x =

∞∑
n=0

(−1)n
x2n

(2n)!

Then

x cos x =
∞∑

n=0

(−1)n
x2n+1

(2n)!

so that

tan−1 x − x cos x =
∞∑

n=0

(−1)n
(

1

2n + 1
− 1

(2n)!
)

x2n+1

= 1

6
x3 + 19

120
x5 +

∞∑
n=3

(−1)n
(

1

2n + 1
− 1

(2n)!
)

x2n+1

and

tan−1 x − x cos x − 1
6x3

x5 = 19

120
+

∞∑
n=3

(−1)n
(

1

2n + 1
− 1

(2n)!
)

x2n−4



March 31, 2011

S E C T I O N 10.7 Taylor Series 1347

Since the radius of convergence of the series for tan−1 x is 1 and that of cos x is infinite, the radius of convergence of this
series is 1. Recall from the previous section that a convergent power series is continuous within its radius of convergence.
Thus to calculate the limit of this power series as x → 0 it suffices to evaluate it at x = 0:

lim
x→0

tan−1 x − x cos x − 1
6x3

x5 = lim
x→0

⎛
⎝ 19

120
+

∞∑
n=3

(−1)n
(

1

2n + 1
− 1

(2n)!
)

x2n−4

⎞
⎠ = 19

120
+ 0 = 19

120

83. lim
x→0

(
sin(x2)

x4
− cos x

x2

)

solution We start with

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! cos x =
∞∑

n=0

(−1)n
x2n

(2n)!

so that

sin(x2)

x4
=

∞∑
n=0

(−1)n
x4n+2

(2n + 1)!x4
=

∞∑
n=0

(−1)n
x4n−2

(2n + 1)!

cos x

x2
=

∞∑
n=0

(−1)n
x2n−2

(2n)!

Expanding the first few terms gives

sin(x2)

x4
= 1

x2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)!

cos x

x2
= 1

x2
− 1

2
+

∞∑
n=2

(−1)n
x2n−2

(2n)!

so that

sin(x2)

x4
− cos x

x2
= 1

2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)! −
∞∑

n=2

(−1)n
x2n−2

(2n)!

Note that all terms under the summation signs have positive powers of x. Now, the radius of convergence of the series
for both sin and cos is infinite, so the radius of convergence of this series is infinite. Recall from the previous section that
a convergent power series is continuous within its radius of convergence. Thus to calculate the limit of this power series
as x → 0 it suffices to evaluate it at x = 0:

lim
x→0

(
sin(x2)

x4
− cos x

x2

)
= lim

x→0

⎛
⎝1

2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)! −
∞∑

n=2

(−1)n
x2n−2

(2n)!

⎞
⎠ = 1

2
+ 0 = 1

2

Further Insights and Challenges
84. In this exercise we show that the Maclaurin expansion of f (x) = ln(1 + x) is valid for x = 1.

(a) Show that for all x 	= −1,

1

1 + x
=

N∑
n=0

(−1)nxn + (−1)N+1xN+1

1 + x

(b) Integrate from 0 to 1 to obtain

ln 2 =
N∑

n=1

(−1)n−1

n
+ (−1)N+1

∫ 1

0

xN+1 dx

1 + x

(c) Verify that the integral on the right tends to zero as N → ∞ by showing that it is smaller than
∫ 1

0 xN+1dx.
(d) Prove the formula

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · ·
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solution

(a) Substituting −x for x in the Maclaurin series for 1
1−x

yields

1

1 + x
=

∞∑
n=0

(−1)nxn.

Now, rewrite the series as

N∑
n=0

(−1)nxn +
∞∑

n=N+1

(−1)nxn,

and use the formula for the sum of a geometric series on the second term to obtain

1

1 + x
=

N∑
n=0

(−1)nxn + (−1)N+1xN+1

1 + x
.

(b) Integrate the equation derived in part (a) from 0 to 1 to obtain

ln(1 + x)

∣∣∣∣1
0

=
N∑

n=0

(−1)n
xn+1

n + 1

∣∣∣∣1
0

+ (−1)N+1
∫ 1

0

xN+1

1 + x
dx,

or

ln 2 =
N∑

n=0

(−1)n

n + 1
+ (−1)N+1

∫ 1

0

xN+1

1 + x
dx =

N+1∑
n=1

(−1)n−1

n
+ (−1)N+1

∫ 1

0

xN+1

1 + x
dx.

(c) For 0 < x < 1,

0 ≤ xN+1

1 + x
≤ xN+1 so 0 ≤

∫ 1

0

xN+1

1 + x
dx ≤

∫ 1

0
xN+1 dx.

Now,

∫ 1

0
xN+1 dx = xN+2

N + 2

∣∣∣∣∣
1

0

= 1

N + 2
→ 0 as N → ∞.

Thus, by the Squeeze Theorem,

lim
N→∞

∫ 1

0

xN+1

1 + x
dx = 0.

(d) Taking the limit as N → ∞ of the equation derived in part (b) and using the result from part (c), we find

ln 2 =
∞∑

n=1

(−1)n−1

n
= 1 − 1

2
+ 1

3
− 1

4
+ · · · .

85. Let g(t) = 1

1 + t2
− t

1 + t2
.

(a) Show that
∫ 1

0
g(t) dt = π

4
− 1

2
ln 2.

(b) Show that g(t) = 1 − t − t2 + t3 − t4 − t5 + · · · .

(c) Evaluate S = 1 − 1
2 − 1

3 + 1
4 − 1

5 − 1
6 + · · · .

solution
(a) ∫ 1

0
g(t) dt =

(
tan−1 t − 1

2
ln(t2 + 1)

) ∣∣∣∣1
0

= tan−1 1 − 1

2
ln 2 = π

4
− 1

2
ln 2

(b) Start with the Taylor series for 1
1+t

:

1

1 + t
=

∞∑
n=0

(−1)ntn
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and substitute t2 for t to get

1

1 + t2
=

∞∑
n=0

(−1)nt2n = 1 − t2 + t4 − t6 + . . .

so that

t

1 + t2
=

∞∑
n=0

(−1)nt2n+1 = t − t3 + t5 − t7 + . . .

Finally,

g(t) = 1

1 + t2
− t

1 + t2
= 1 − t − t2 + t3 + t4 − t5 − t6 + t7 + . . .

(c) We have∫
g(t) dt =

∫
(1 − t − t2 + t3 + t4 − t5 − . . . ) dt = t − 1

2
t2 − 1

3
t3 + 1

4
t4 + 1

5
t5 − 1

6
t6 − · · · + C

The radius of convergence of the series for g(t) is 1, so the radius of convergence of this series is also 1. However, this
series converges at the right endpoint, t = 1, since(

1 − 1

2

)
−
(

1

3
− 1

4

)
+
(

1

5
− 1

6

)
− . . .

is an alternating series with general term decreasing to zero. Thus by part (a),

1 − 1

2
− 1

3
+ 1

4
+ 1

5
− 1

6
− · · · = π

4
− 1

2
ln 2

In Exercises 86 and 87, we investigate the convergence of the binomial series

Ta(x) =
∞∑

n=0

(
a

n

)
xn

86. Prove that Ta(x) has radius of convergence R = 1 if a is not a whole number. What is the radius of convergence if a

is a whole number?

solution Suppose that a is not a whole number. Then(
a

n

)
= a (a − 1) · · · (a − n + 1)

n!
is never zero. Moreover,∣∣∣∣∣∣∣∣

(
a

n + 1

)
(

a

n

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣a(a − 1) · · · (a − n + 1)(a − n)

(n + 1)! · n!
a(a − 1) · · · (a − n + 1)

∣∣∣∣ =
∣∣∣∣a − n

n + 1

∣∣∣∣ ,
so, by the formula for the radius of convergence

r = lim
n→∞

∣∣∣∣a − n

n + 1

∣∣∣∣ = 1.

The radius of convergence of Ta(x) is therefore R = r−1 = 1.

If a is a whole number, then

(
a

n

)
= 0 for all n > a. The infinite series then reduces to a polynomial of degree a,

so it converges for all x (i.e. R = ∞).

87. By Exercise 86, Ta(x) converges for |x| < 1, but we do not yet know whether Ta(x) = (1 + x)a .

(a) Verify the identity

a

(
a

n

)
= n

(
a

n

)
+ (n + 1)

(
a

n + 1

)

(b) Use (a) to show that y = Ta(x) satisfies the differential equation (1 + x)y′ = ay with initial condition y(0) = 1.

(c) Prove that Ta(x) = (1 + x)a for |x| < 1 by showing that the derivative of the ratio
Ta(x)

(1 + x)a
is zero.
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solution
(a)

n

(
a

n

)
+ (n + 1)

(
a

n + 1

)
= n · a (a − 1) · · · (a − n + 1)

n! + (n + 1) · a (a − 1) · · · (a − n + 1) (a − n)

(n + 1)!

= a (a − 1) · · · (a − n + 1)

(n − 1)! + a (a − 1) · · · (a − n + 1) (a − n)

n!

= a (a − 1) · · · (a − n + 1) (n + (a − n))

n! = a ·
(

a

n

)
(b) Differentiating Ta(x) term-by-term yields

T ′
a(x) =

∞∑
n=1

n

(
a

n

)
xn−1.

Thus,

(1 + x)T ′
a(x) =

∞∑
n=1

n

(
a

n

)
xn−1 +

∞∑
n=1

n

(
a

n

)
xn =

∞∑
n=0

(n + 1)

(
a

n + 1

)
xn +

∞∑
n=0

n

(
a

n

)
xn

=
∞∑

n=0

[
(n + 1)

(
a

n + 1

)
+ n

(
a

n

)]
xn = a

∞∑
n=0

(
a

n

)
xn = aTa(x).

Moreover,

Ta(0) =
(

a

0

)
= 1.

(c)

d

dx

(
Ta(x)

(1 + x)a

)
= (1 + x)aT ′

a(x) − a(1 + x)a−1Ta(x)

(1 + x)2a
= (1 + x)T ′

a(x) − aTa(x)

(1 + x)a+1
= 0.

Thus,

Ta(x)

(1 + x)a
= C,

for some constant C. For x = 0,

Ta(0)

(1 + 0)a
= 1

1
= 1, so C = 1.

Finally, Ta(x) = (1 + x)a .

88. The function G(k) = ∫ π/2
0

√
1 − k2 sin2 t dt is called an elliptic function of the second kind. Prove that for |k| < 1,

G(k) = π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · · · 4 · (2n)

)2 k2n

2n − 1

solution For |k| < 1, |k2 sin2 t | < 1 for all t . Substituting −k2 sin2 t for t in the binomial series for a = 1
2 , we find√

1 − k2 sin2 t = 1 +
∞∑

n=1

( 1
2
n

)(
−k2 sin2 t

)n

= 1 +
∞∑

n=1

(−1)n
1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·

(
1
2 − n + 1

)
n! k2n sin2n t

= 1 +
∞∑

n=1

(−1)n
1(1 − 2)(1 − 4) · · · (1 − 2(n − 1))

2nn! k2n sin2n t

= 1 +
∞∑

n=1

(−1)n(−1)n−1 (2 − 1)(4 − 1) · · · (2n − 3)

2nn! k2n sin2n t

= 1 −
∞∑

n=1

1 · 3 · 5 · · · (2n − 3)

2 · 4 · 6 · · · (2n)
k2n sin2n t.
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Integrating from 0 to π
2 term-by-term, we obtain

G(k) = π

2
−

∞∑
n=1

1 · 3 · 5 · · · (2n − 3)

2 · 4 · 6 · · · (2n)
k2n

∫ π/2

0
sin2n t dt.

Finally, using the formula ∫ π/2

0
sin2n t dt = 1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

π

2
,

we arrive at

G(k) = π

2
− π

2

∞∑
n=1

(
1 · 3 · 5 · · · (2n − 3)

2 · 4 · 6 · · · (2n)

)2
(2n − 1)k2n = π

2
− π

2

∞∑
n=1

(
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

)2 k2n

2n − 1
.

89. Assume that a < b and let L be the arc length (circumference) of the ellipse
(
x
a

)2 + ( y
b

)2 = 1 shown in Figure 5.

There is no explicit formula for L, but it is known that L = 4bG(k), with G(k) as in Exercise 88 and k =
√

1 − a2/b2.
Use the first three terms of the expansion of Exercise 88 to estimate L when a = 4 and b = 5.

a

b

y

x

FIGURE 5 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

solution With a = 4 and b = 5,

k =
√

1 − 42

52
= 3

5
,

and the arc length of the ellipse
(x

4

)2 +
(y

5

)2 = 1 is

L = 20G

(
3

5

)
= 20

⎛
⎜⎝π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)

)2
(

3
5

)2n

2n − 1

⎞
⎟⎠ .

Using the first three terms in the series for G(k) gives

L ≈ 10π − 10π

((
1

2

)2
· (3/5)2

1
+
(

1 · 3

2 · 4

)2
· (3/5)4

3

)
= 10π

(
1 − 9

100
− 243

40,000

)
= 36,157π

4000
≈ 28.398.

90. Use Exercise 88 to prove that if a < b and a/b is near 1 (a nearly circular ellipse), then

L ≈ π

2

(
3b + a2

b

)
Hint: Use the first two terms of the series for G(k).

solution From the previous exercise, we know that

L = 4bG(k), where k =
√

1 − a2

b2
.

Following the hint and using only the first two terms of the series expansion for G(k) from Exercise 88, we find

L ≈ 4b

(
π

2
− π

2

(
1

2

)2
k2

)
= π

2

(
4b − b

(
1 − a2

b2

))
= π

2

(
3b + a2

b

)
.
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91. Irrationality of e Prove that e is an irrational number using the following argument by contradiction. Suppose that
e = M/N , where M, N are nonzero integers.

(a) Show that M! e−1 is a whole number.

(b) Use the power series for ex at x = −1 to show that there is an integer B such that M! e−1 equals

B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)

(c) Use your knowledge of alternating series with decreasing terms to conclude that 0 < |M! e−1 − B| < 1 and observe
that this contradicts (a). Hence, e is not equal to M/N .

solution Suppose that e = M/N , where M, N are nonzero integers.

(a) With e = M/N ,

M!e−1 = M! N
M

= (M − 1)!N,

which is a whole number.

(b) Substituting x = −1 into the Maclaurin series for ex and multiplying the resulting series by M! yields

M!e−1 = M!
(

1 − 1 + 1

2! − 1

3! + · · · + (−1)k

k! + · · ·
)

.

For all k ≤ M ,
M!
k! is a whole number, so

M!
(

1 − 1 + 1

2! − 1

3! + · · · + (−1)k

M!

)

is an integer. Denote this integer by B. Thus,

M! e−1 = B + M!
(

(−1)M+1

(M + 1)! + (−1)M+2

(M + 2)! + · · ·
)

= B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)
.

(c) The series for M! e−1 obtained in part (b) is an alternating series with an = M!
n! . Using the error bound for an

alternating series and noting that B = SM , we have∣∣∣M! e−1 − B

∣∣∣ ≤ aM+1 = 1

M + 1
< 1.

This inequality implies that M! e−1 − B is not a whole number; however, B is a whole number so M! e−1 cannot be a
whole number. We get a contradiction to the result in part (a), which proves that the original assumption that e is a rational
number is false.

92. Use the result of Exercise 73 in Section 4.5 to show that the Maclaurin series of the function

f (x) =
{

e−1/x2
for x 	= 0

0 for x = 0

is T (x) = 0. This provides an example of a function f (x) whose Maclaurin series converges but does not converge to
f (x) (except at x = 0).

solution By the referenced exercise, f (x) has continuous derivatives of all orders at 0, and f (n)(0) = 0 for all n > 0.
But then the Maclaurin series is

f (x) =
∞∑

n=0

f (n)(0)

n! xn = f (0) +
∞∑

n=1

f (n)(0)

n! xn = 0

CHAPTER REVIEW EXERCISES

1. Let an = n − 3

n! and bn = an+3. Calculate the first three terms in each sequence.

(a) a2
n (b) bn

(c) anbn (d) 2an+1 − 3an
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solution

(a)

a2
1 =

(
1 − 3

1!
)2

= (−2)2 = 4;

a2
2 =

(
2 − 3

2!
)2

=
(

−1

2

)2
= 1

4
;

a2
3 =

(
3 − 3

3!
)2

= 0.

(b)

b1 = a4 = 4 − 3

4! = 1

24
;

b2 = a5 = 5 − 3

5! = 1

60
;

b3 = a6 = 6 − 3

6! = 1

240
.

(c) Using the formula for an and the values in (b) we obtain:

a1b1 = 1 − 3

1! · 1

24
= − 1

12
;

a2b2 = 2 − 3

2! · 1

60
= − 1

120
;

a3b3 = 3 − 3

3! · 1

240
= 0.

(d)

2a2 − 3a1 = 2

(
−1

2

)
− 3(−2) = 5;

2a3 − 3a2 = 2 · 0 − 3

(
−1

2

)
= 3

2
;

2a4 − 3a3 = 2 · 1

24
− 3 · 0 = 1

12
.

2. Prove that lim
n→∞

2n − 1

3n + 2
= 2

3
using the limit definition.

solution Note ∣∣∣∣2n − 1

3n + 2
− 2

3

∣∣∣∣ =
∣∣∣∣6n − 3 − 2(3n + 2)

3(3n + 2)

∣∣∣∣ =
∣∣∣∣− 7

3(3n + 2)

∣∣∣∣ = 7

3(3n + 2)
<

7

9n
.

Therefore, to have
∣∣∣an − 2

3

∣∣∣ < ε, we need

7

9n
< ε or n >

7

9ε
.

Thus, let ε > 0 and take M = 7
9ε

. Then, whenever n > M ,∣∣∣∣2n − 1

3n + 2
− 2

3

∣∣∣∣ = 7

3(3n + 2)
<

7

9n
<

7

9
· 9ε

7
= ε.

In Exercises 3–8, compute the limit (or state that it does not exist) assuming that lim
n→∞ an = 2.

3. lim
n→∞(5an − 2a2

n)

solution

lim
n→∞

(
5an − 2a2

n

)
= 5 lim

n→∞ an − 2 lim
n→∞ a2

n = 5 lim
n→∞ an − 2

(
lim

n→∞ an

)2 = 5 · 2 − 2 · 22 = 2.
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4. lim
n→∞

1

an

solution lim
n→∞

1

an
= 1

limn→∞ an
= 1

2
.

5. lim
n→∞ ean

solution The function f (x) = ex is continuous, hence:

lim
n→∞ ean = elimn→∞ an = e2.

6. lim
n→∞ cos(πan)

solution The function f (x) = cos(πx) is continuous, hence:

lim
n→∞ cos(πan) = cos

(
π lim

n→∞ an

)
= cos(2π) = 1.

7. lim
n→∞(−1)nan

solution Because lim
n→∞ an 	= 0, it follows that lim

n→∞(−1)nan does not exist.

8. lim
n→∞

an + n

an + n2

solution Because the sequence {an} converges, {an} is bounded and

lim
n→∞

an

n2
= 0.

Thus,

lim
n→∞

an + n

an + n2
= lim

n→∞

an

n2 + 1
n

an

n2 + 1
= 0 + 0

0 + 1
= 0.

In Exercises 9–22, determine the limit of the sequence or show that the sequence diverges.

9. an = √
n + 5 − √

n + 2

solution First rewrite an as follows:

an =
(√

n + 5 − √
n + 2

) (√
n + 5 + √

n + 2
)

√
n + 5 + √

n + 2
= (n + 5) − (n + 2)√

n + 5 + √
n + 2

= 3√
n + 5 + √

n + 2
.

Thus,

lim
n→∞ an = lim

n→∞
3√

n + 5 + √
n + 2

= 0.

10. an = 3n3 − n

1 − 2n3

solution lim
n→∞ an = lim

n→∞
3n3 − n

1 − 2n3
= −3

2
.

11. an = 21/n2

solution The function f (x) = 2x is continuous, so

lim
n→∞ an = lim

n→∞ 21/n2 = 2limn→∞(1/n2) = 20 = 1.

12. an = 10n

n!
solution For n > 10, write an as

0 ≤ an =
(

10

1
· 10

2
· · · · · 10

10

)
︸ ︷︷ ︸

equals 1010
10!

(
10

11

)
·
(

10

12

)
· · · · ·

(
10

n

)
︸ ︷︷ ︸

each factor is less than 1

<
1010

10! · 10

n
= 1010

9!n ;

Thus, by the Squeeze Theorem, lim
n→∞ an = 0.
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13. bm = 1 + (−1)m

solution Because 1 + (−1)m is equal to 0 for m odd and is equal to 2 for m even, the sequence {bm} does not approach
one limit; hence this sequence diverges.

14. bm = 1 + (−1)m

m

solution The numerator is equal to zero for m odd and is equal to 2 for m even. Therefore,

0 ≤ 1 + (−1)m

m
≤ 2

m
,

and by the Squeeze Theorem, lim
m→∞ bm = 0.

15. bn = tan−1
(

n + 2

n + 5

)
solution The function tan−1x is continuous, so

lim
n→∞ bn = lim

n→∞ tan−1
(

n + 2

n + 5

)
= tan−1

(
lim

n→∞
n + 2

n + 5

)
= tan−1 1 = π

4
.

16. an = 100n

n! − 3 + πn

5n

solution For n > 100,

0 ≤ 100n

n! =
(

100

1
· 100

2
· · · 100

100

)
100

101
· 100

102
· 100

n
<

100100

99!n ;

therefore,

lim
n→∞

100n

n! = 0

by the Squeeze Theorem. Moreover,

lim
n→∞

(
3 + πn

5n

)
= lim

n→∞
3

5n
+ lim

n→∞
(π

5

)n = 0 + 0 = 0.

Thus,

lim
n→∞ an = 0 + 0 = 0.

17. bn =
√

n2 + n −
√

n2 + 1

solution Rewrite bn as

bn =
(√

n2 + n −
√

n2 + 1
) (√

n2 + n +
√

n2 + 1
)

√
n2 + n +

√
n2 + 1

=
(
n2 + n

)
−
(
n2 + 1

)
√

n2 + n +
√

n2 + 1
= n − 1√

n2 + n +
√

n2 + 1
.

Then

lim
n→∞ bn = lim

n→∞
n
n − 1

n√
n2

n2 + n
n2 +

√
n2

n2 + 1
n2

= lim
n→∞

1 − 1
n√

1 + 1
n +

√
1 + 1

n2

= 1 − 0√
1 + 0 + √

1 + 0
= 1

2
.

18. cn =
√

n2 + n −
√

n2 − n

solution Rewrite cn as

cn =
(√

n2 + n −
√

n2 − n
) (√

n2 + n +
√

n2 − n
)

√
n2 + n +

√
n2 − n

=
(
n2 + n

)
−
(
n2 − n

)
√

n2 + n +
√

n2 − n
= 2n√

n2 + n +
√

n2 − n
.

Then

lim
n→∞ cn = lim

n→∞
2n
n√

n2

n2 + n
n2 +

√
n2

n2 − n
n2

= lim
n→∞

2√
1 + 1

n +
√

1 − 1
n

= 2√
1 + 0 + √

1 − 0
= 1.
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19. bm =
(

1 + 1

m

)3m

solution lim
m→∞ bm = lim

m→∞

(
1 + 1

m

)m

= e.

20. cn =
(

1 + 3

n

)n

solution Write

cn =
(

1 + 1

n/3

)n

=
[(

1 + 1

n/3

)n/3
]3

.

Then, because x3 is a continuous function,

lim
n→∞ cn =

[
lim

n→∞

(
1 + 1

n/3

)n/3
]3

= e3.

21. bn = n
(

ln(n + 1) − ln n
)

solution Write

bn = n ln

(
n + 1

n

)
=

ln
(

1 + 1
n

)
1
n

.

Using L’Hôpital’s Rule, we find

lim
n→∞ bn = lim

n→∞
ln
(

1 + 1
n

)
1
n

= lim
x→∞

ln
(

1 + 1
x

)
1
x

= lim
x→∞

(
1 + 1

x

)−1 ·
(
− 1

x2

)
− 1

x2

= lim
x→∞

(
1 + 1

x

)−1
= 1.

22. cn = ln(n2 + 1)

ln(n3 + 1)

solution Using L’Hôpital’s Rule, we find

lim
n→∞ cn = lim

n→∞
ln(n2 + 1)

ln(n3 + 1)
= lim

n→∞
2n/(n2 + 1)

3n2/(n3 + 1)
= lim

n→∞
2n4 + 2n

3n4 + 3n2
= lim

n→∞
2 + 2n−3

3 + 3n−2
= 2

3

23. Use the Squeeze Theorem to show that lim
n→∞

arctan(n2)√
n

= 0.

solution For all x,

−π

2
< arctan x <

π

2
,

so

−π/2√
n

<
arctan(n2)√

n
<

π/2√
n

,

for all n. Because

lim
n→∞

(
−π/2√

n

)
= lim

n→∞
π/2√

n
= 0,

it follows by the Squeeze Theorem that

lim
n→∞

arctan(n2)√
n

= 0.

24. Give an example of a divergent sequence {an} such that {sin an} is convergent.

solution Let an = (−1)nπ . This is an alternating series, which does not approach 0, hence it diverges. However, an

is a multiple of π for every n, and thus, sin an = 0. Since {sin an} is a constant sequence, it converges.
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25. Calculate lim
n→∞

an+1

an
, where an = 1

2
3n − 1

3
2n.

solution Because

1

2
3n − 1

3
2n ≥ 1

2
3n − 1

3
3n = 3n

6

and

lim
n→∞

3n

6
= ∞,

we conclude that limn→∞ an = ∞, so L’Hôpital’s rule may be used:

lim
n→∞

an+1

an
= lim

n→∞
1
2 3n+1 − 1

3 2n+1

1
2 3n − 1

3 2n
= lim

n→∞
3n+2 − 2n+2

3n+1 − 2n+1
= lim

n→∞
3 − 2

(
2
3

)n+1

1 −
(

2
3

)n+1
= 3 − 0

1 − 0
= 3.

26. Define an+1 = √
an + 6 with a1 = 2.

(a) Compute an for n = 2, 3, 4, 5.

(b) Show that {an} is increasing and is bounded by 3.

(c) Prove that lim
n→∞ an exists and find its value.

solution

(a) We compute the first four values of an recursively:

a2 = √
a1 + 6 = √

2 + 6 = √
8 = 2

√
2 ≈ 2.828427;

a3 = √
a2 + 6 =

√
2
√

2 + 6 ≈ 2.971267;

a4 = √
a3 + 6 =

√√
2
√

2 + 6 + 6 ≈ 2.995207;

a5 = √
a4 + 6 =

√√√
2
√

2 + 6 + 6 + 6 ≈ 2.999201.

(b) By part (a) and the given data, a2 ≈ 2.8 and a1 = 2, so a2 > a1. Now, suppose that ak > ak−1; then

ak+1 = √
ak + 6 >

√
ak−1 + 6 = ak.

Thus, by mathematical induction, an+1 > an for all n and {an} is increasing.
Next, note that a1 = 2 < 3. Suppose ak < 3, then

ak+1 = √
ak + 6 <

√
3 + 6 = 3.

Thus, by mathematical induction, an < 3 for all n.

(c) Since {an} is increasing and has an upper bound, {an} converges. Let

L = lim
n→∞ an.

Then,

L = √
L + 6

L2 = L + 6

L2 − L − 6 = 0

(L − 3)(L + 2) = 0

so L = 3 or L = −2; however, the sequence is increasing and its first term is positive, so −2 cannot be the limit.
Therefore,

lim
n→∞ an = 3.
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27. Calculate the partial sums S4 and S7 of the series
∞∑

n=1

n − 2

n2 + 2n
.

solution

S4 = −1

3
+ 0 + 1

15
+ 2

24
= − 11

60
= −0.183333;

S7 = −1

3
+ 0 + 1

15
+ 2

24
+ 3

35
+ 4

48
+ 5

63
= 287

4410
= 0.065079.

28. Find the sum 1 − 1

4
+ 1

42
− 1

43
+ · · · .

solution This is a geometric series with r = − 1
4 . Therefore,

1 − 1

4
+ 1

42
− 1

43
+ · · · = 1

1 − (− 1
4 )

= 4

5
.

29. Find the sum
4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · .

solution This is a geometric series with common ratio r = 2
3 . Therefore,

4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · =

4
9

1 − 2
3

= 4

3
.

30. Find the sum
∞∑

n=2

(
2

e

)n

.

solution This is a geometric series with common ratio r = 2
e . Therefore,

∞∑
n=2

(
2

e

)n

=
(

2
e

)2

1 − 2
e

=
4
e2

1 − 2
e

= 4

e2 − 2e
.

31. Find the sum
∞∑

n=−1

2n+3

3n
.

solution Note

∞∑
n=−1

2n+3

3n
= 23

∞∑
n=−1

2n

3n
= 8

∞∑
n=−1

(
2

3

)n

;

therefore,

∞∑
n=−1

2n+3

3n
= 8 · 3

2
· 1

1 − 2
3

= 36.

32. Show that
∞∑

n=1

(
b − tan−1 n2) diverges if b 	= π

2
.

solution Note

lim
n→∞

(
b − tan−1 n2

)
= b − lim

n→∞ tan−1 n2 = b − π

2
.

If b 	= π
2 , then the limit of the terms in the series is not 0; hence, the series diverges by the Divergence Test.

33. Give an example of divergent series
∞∑

n=1

an and
∞∑

n=1

bn such that
∞∑

n=1

(an + bn) = 1.

solution Let an =
(

1
2

)n + 1, bn = −1. The corresponding series diverge by the Divergence Test; however,

∞∑
n=1

(an + bn) =
∞∑

n=1

(
1

2

)n

=
1
2

1 − 1
2

= 1.
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34. Let S =
∞∑

n=1

(
1

n
− 1

n + 2

)
. Compute SN for N = 1, 2, 3, 4. Find S by showing that

SN = 3

2
− 1

N + 1
− 1

N + 2

solution

S1 = 1 − 1

3
= 2

3
;

S2 =
(

1 − 1

3

)
+
(

1

2
− 1

4

)
= 3

2
− 7

12
= 11

12
;

S3 =
(

1 − 1

3

)
+
(

1

2
− 1

4

)
+
(

1

3
− 1

5

)
= 3

2
− 9

20
= 21

20
;

S4 =
(

1 − 1

3

)
+
(

1

2
− 1

4

)
+
(

1

3
− 1

5

)
+
(

1

4
− 1

6

)
= 3

2
− 11

30
= 17

15
.

The general term in the sequence of partial sums is

SN =
(

1 − 1

3

)
+
(

1

2
− 1

4

)
+
(

1

3
− 1

5

)
+
(

1

4
− 1

6

)
+ · · · +

(
1

N − 1
− 1

N + 1

)
+
(

1

N
− 1

N + 2

)

= 1 + 1

2
− 1

N + 1
− 1

N + 2
= 3

2
−
(

1

N + 1
+ 1

N + 2

)
.

Finally,

S = lim
N→∞ SN = lim

N→∞

[
3

2
−
(

1

N + 1
+ 1

N + 2

)]
= 3

2
.

35. Evaluate S =
∞∑

n=3

1

n(n + 3)
.

solution Note that

1

n(n + 3)
= 1

3

(
1

n
− 1

n + 3

)
so that

N∑
n=3

1

n(n + 3)
= 1

3

N∑
n=3

(
1

n
− 1

n + 3

)

= 1

3

((
1

3
− 1

6

)
+
(

1

4
− 1

7

)
+
(

1

5
− 1

8

)
(

1

6
− 1

9

)
+ · · · +

(
1

N − 1
− 1

N + 2

)
+
(

1

N
− 1

N + 3

))

= 1

3

(
1

3
+ 1

4
+ 1

5
− 1

N + 1
− 1

N + 2
− 1

N + 3

)
Thus

∞∑
n=3

1

n(n + 3)
= 1

3
lim

N→∞

N∑
n=3

(
1

n
− 1

n + 3

)

= 1

3

(
1

3
+ 1

4
+ 1

5
− 1

N + 1
− 1

N + 2
− 1

N + 3

)
= 1

3

(
1

3
+ 1

4
+ 1

5

)
= 47

180

36. Find the total area of the infinitely many circles on the interval [0, 1] in Figure 1.

x

1
0

1
8

1
4

1
2

FIGURE 1
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solution The diameter of the largest circle is 1
2 , and the diameter of each smaller circle is 1

2 the diameter of the

previous circle; thus, the diameter of the nth circle (for n ≥ 1) is 1
2n and the area is

π

(
1

2n+1

)2
= π

4n+1
.

The total area of the circles is

∞∑
n=1

π

4n+1
= π

4

∞∑
n=1

(
1

4

)n

= π

4
·

1
4

1 − 1
4

= π

12
.

In Exercises 37–40, use the Integral Test to determine whether the infinite series converges.

37.
∞∑

n=1

n2

n3 + 1

solution Let f (x) = x2

x3+1
. This function is continuous and positive for x ≥ 1. Because

f ′(x) = (x3 + 1)(2x) − x2(3x2)

(x3 + 1)2
= x(2 − x3)

(x3 + 1)2
,

we see that f ′(x) < 0 and f is decreasing on the interval x ≥ 2. Therefore, the Integral Test applies on the interval x ≥ 2.
Now,

∫ ∞
2

x2

x3 + 1
dx = lim

R→∞

∫ R

2

x2

x3 + 1
dx = 1

3
lim

R→∞
(

ln(R3 + 1) − ln 9
)

= ∞.

The integral diverges; hence, the series
∞∑

n=2

n2

n3 + 1
diverges, as does the series

∞∑
n=1

n2

n3 + 1
.

38.
∞∑

n=1

n2

(n3 + 1)1.01

solution Let f (x) = x2

(x3+1)1.01 . This function is continuous and positive for x ≥ 1. Because

f ′(x) = (x3 + 1)1.01(2x) − x2 · 1.01(x3 + 1)0.01(3x2)

(x3 + 1)2.02
= x(x3 + 1)0.01(2 − 1.03x3)

(x3 + 1)2.02
,

we see that f ′(x) < 0 and f is decreasing on the interval x ≥ 2. Therefore, the Integral Test applies on the interval x ≥ 2.
Now,

∫ ∞
2

x2

(x3 + 1)1.01
dx = lim

R→∞

∫ R

2

x2

(x3 + 1)1.01
dx = − 1

0.03
lim

R→∞

(
1

(R3 + 1)0.01
− 1

90.01

)
= 1

0.03 · 90.01
.

The integral converges; hence, the series
∞∑

n=2

n2

(n3 + 1)1.01
converges, as does the series

∞∑
n=1

n2

(n3 + 1)1.01
.

39.
∞∑

n=1

1

(n + 2)(ln(n + 2))3

solution Let f (x) = 1
(x+2) ln3(x+2)

. Using the substitution u = ln(x + 2), so that du = 1
x+2 dx, we have

∫ ∞
0

f (x) dx =
∫ ∞

ln 2

1

u3
du = lim

R→∞

∫ ∞
ln 2

1

u3
du = lim

R→∞

(
− 1

2u2

∣∣∣∣R
ln 2

)

= lim
R→∞

(
1

2(ln 2)2
− 1

2(ln R)2

)
= 1

2(ln 2)2

Since the integral of f (x) converges, so does the series.
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40.
∞∑

n=1

n3

en4

solution Let f (x) = x3e−x4
. This function is continuous and positive for x ≥ 1. Because

f ′(x) = x3
(
−4x3e−x4

)
+ 3x2e−x4 = x2e−x4

(
3 − 4x4

)
,

we see that f ′(x) < 0 and f is decreasing on the interval x ≥ 1. Therefore, the Integral Test applies on the interval x ≥ 1.
Now, ∫ ∞

1
x3e−x4

dx = lim
R→∞

∫ R

1
x3e−x4

dx = −1

4
lim

R→∞
(
e−R4 − e−1

)
= 1

4e
.

The integral converges; hence, the series
∞∑

n=1

n3

en4 also converges.

In Exercises 41–48, use the Comparison or Limit Comparison Test to determine whether the infinite series converges.

41.
∞∑

n=1

1

(n + 1)2

solution For all n ≥ 1,

0 <
1

n + 1
<

1

n
so

1

(n + 1)2
<

1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=1

1

(n + 1)2
converges by the Comparison Test.

42.
∞∑

n=1

1√
n + n

solution Apply the Limit Comparison Test with an = 1√
n+n

and bn = 1
n . Now,

L = lim
n→∞

1√
n+n

1
n

= lim
n→∞

n√
n + n

= lim
n→∞

1
1√
n

+ 1
= 1.

Because L > 0 and
∞∑

n=1

1

n
is the divergent harmonic series, we conclude by the Limit Comparison Test that the series

∞∑
n=1

1√
n + n

also diverges.

43.
∞∑

n=2

n2 + 1

n3.5 − 2

solution Apply the Limit Comparison Test with an = n2+1
n3.5−2

and bn = 1
n1.5 . Now,

L = lim
n→∞

n2+1
n3.5−2

1
n1.5

= lim
n→∞

n3.5 + n1.5

n3.5 − 2
= 1.

Because L exists and
∞∑

n=1

1

n1.5
is a convergent p-series, we conclude by the Limit Comparison Test that the series

∞∑
n=2

n2 + 1

n3.5 − 2
also converges.

44.
∞∑

n=1

1

n − ln n

solution Since 0 ≤ ln n ≤ n for all n ≥ 1, we have 0 ≤ n − ln n ≤ n and

1

n
≤ 1

n − ln n

The harmonic series
∞∑

n=1

1

n
diverges, so we conclude by the Comparison Test that

∞∑
n=1

1

n − ln n
also diverges.
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45.
∞∑

n=2

n√
n5 + 5

solution For all n ≥ 2,

n√
n5 + 5

<
n

n5/2
= 1

n3/2
.

The series
∞∑

n=2

1

n3/2
is a convergent p-series, so the series

∞∑
n=2

n√
n5 + 5

converges by the Comparison Test.

46.
∞∑

n=1

1

3n − 2n

solution Apply the Limit Comparison Test with an = 1
3n−2n and bn = 1

3n . Then,

L = lim
n→∞

an

bn
= lim

n→∞
3n

3n − 2n
= lim

n→∞
1

1 −
(

2
3

)n = 1.

The series
∞∑

n=1

1

3n
is a convergent geometric series; because L exists, we may therefore conclude by the Limit Comparison

Test that the series
∞∑

n=1

1

3n − 2n
also converges.

47.
∞∑

n=1

n10 + 10n

n11 + 11n

solution Apply the Limit Comparison Test with an = n10+10n

n11+11n and bn =
(

10
11

)n
. Then,

L = lim
n→∞

an

bn
= lim

n→∞

n10+10n

n11+11n(
10
11

)n = lim
n→∞

n10+10n

10n

n11+11n

11n

= lim
n→∞

n10

10n + 1

n11

11n + 1
= 1.

The series
∞∑

n=1

(
10

11

)n

is a convergent geometric series; because L exists, we may therefore conclude by the Limit

Comparison Test that the series
∞∑

n=1

n10 + 10n

n11 + 11n
also converges.

48.
∞∑

n=1

n20 + 21n

n21 + 20n

solution Apply the Limit Comparison Theorem with an = n20+21n

n21+20n and bn =
(

21
20

)n
. Then

L = lim
n→∞

an

bn
= lim

n→∞

n20+21n

n21+20n(
21
20

)n = lim
n→∞

n20+21n

21n

n21+20n

20n

= lim
n→∞

n20

21n + 1

n21

20n + 1
= 1

The series
∞∑

n=1

(
21

20

)n

is a divergent geometric series. Since L = 1, the two series either both converge or both diverge;

thus, we may conclude from the Limit Comparison Test that the series
∞∑

n=1

n20 + 21n

n21 + 20n
diverges.

49. Determine the convergence of
∞∑

n=1

2n + n

3n − 2
using the Limit Comparison Test with bn = ( 2

3

)n.

solution With an = 2n+n
3n−2 , we have

L = lim
n→∞

an

bn
= lim

n→∞
2n + n

3n − 2
· 3n

2n
= lim

n→∞
6n + n3n

6n − 2n+1
= lim

n→∞
1 + n

(
1
2

)n

1 − 2
(

1
3

)n = 1
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Since L = 1, the two series either both converge or both diverge. Since
∞∑

n=1

(
2

3

)n

is a convergent geometric series, the

Limit Comparison Test tells us that
∞∑

n=1

2n + n

3n − 2
also converges.

50. Determine the convergence of
∞∑

n=1

ln n

1.5n
using the Limit Comparison Test with bn = 1

1.4n
.

solution With an = ln n

1.5n
, and using L’Hôpital’s Rule,

L = lim
n→∞

an

bn
= lim

n→∞
ln n
1.5n

1
1.4n

= lim
n→∞

ln n(
1.5
1.4

)n

= lim
n→∞

1/n

ln(1.5/1.4)
(

1.5
1.4

)n = 1

ln(1.5/1.4)
lim

n→∞

(
1.4
1.5

)n

n
= 0

Since L < ∞ and
∞∑

n=1

bn is a convergent geometric series, it follows from the Limit Comparison Test that
∞∑

n=1

ln n

1.5n
also

converges.

51. Let an = 1 −
√

1 − 1
n . Show that lim

n→∞ an = 0 and that
∞∑

n=1

an diverges. Hint: Show that an ≥ 1
2n

.

solution

1 −
√

1 − 1

n
= 1 −

√
n − 1

n
=

√
n − √

n − 1√
n

= n − (n − 1)√
n(

√
n + √

n − 1)
= 1

n +
√

n2 − n

≥ 1

n +
√

n2
= 1

2n
.

The series
∞∑

n=2

1

2n
diverges, so the series

∑∞
n=2

(
1 −

√
1 − 1

n

)
also diverges by the Comparison Test.

52. Determine whether
∞∑

n=2

(
1 −

√
1 − 1

n2

)
converges.

solution

1 −
√

1 − 1

n2
= 1 −

√
n2 − 1

n2
= n −

√
n2 − 1

n
=

n2 −
(
n2 − 1

)
n
(
n +

√
n2 − 1

)
= 1

n
(
n +

√
n2 − 1

) = 1

n2 + n
√

n2 − 1
≤ 1

n2

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=2

(
1 −

√
1 − 1

n2

)
also converges by the Comparison Test.

53. Let S =
∞∑

n=1

n

(n2 + 1)2
.

(a) Show that S converges.
(b) Use Eq. (4) in Exercise 83 of Section 10.3 with M = 99 to approximate S. What is the maximum size of the
error?

solution
(a) For n ≥ 1,

n

(n2 + 1)2
<

n

(n2)2
= 1

n3
.

The series
∞∑

n=1

1

n3
is a convergent p-series, so the series

∞∑
n=1

n

(n2 + 1)2
also converges by the Comparison Test.
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(b) With an = n
(n2+1)2 , f (x) = x

(x2+1)2 and M = 99, Eq. (4) in Exercise 83 of Section 10.3 becomes

99∑
n=1

n

(n2 + 1)2
+
∫ ∞

100

x

(x2 + 1)2
dx ≤ S ≤

100∑
n=1

n

(n2 + 1)2
+
∫ ∞

100

x

(x2 + 1)2
dx,

or

0 ≤ S −
⎛
⎝ 99∑

n=1

n

(n2 + 1)2
+
∫ ∞

100

x

(x2 + 1)2
dx

⎞
⎠ ≤ 100

(1002 + 1)2
.

Now,

99∑
n=1

n

(n2 + 1)2
= 0.397066274; and

∫ ∞
100

x

(x2 + 1)2
dx = lim

R→∞

∫ R

100

x

(x2 + 1)2
dx = 1

2
lim

R→∞

(
− 1

R2 + 1
+ 1

1002 + 1

)

= 1

20002
= 0.000049995;

thus,

S ≈ 0.397066274 + 0.000049995 = 0.397116269.

The bound on the error in this approximation is

100

(1002 + 1)2
= 9.998 × 10−7.

In Exercises 54–57, determine whether the series converges absolutely. If it does not, determine whether it converges
conditionally.

54.
∞∑

n=1

(−1)n

3√n + 2n

solution Both 3√n and 2n are increasing functions, so 3√n + 2n is also increasing. Therefore, 1
3√n+2n

is decreasing.

Moreover,

lim
n→∞

1
3√n + 2n

= 0,

so the series
∞∑

n=1

(−1)n

3√n + 2n
converges by the Leibniz Test.

The corresponding positive series is
∞∑

n=1

1
3√n + 2n

. Because

1
3√n + 2n

>
1

n + 2n
= 1

3
· 1

n

and the harmonic series
∞∑

n=1

1

n
diverges,

∞∑
n=1

1
3√n + 2n

also diverges by the Comparison Test. Thus,
∑∞

n=1
(−1)n

3√n+2n

converges conditionally.

55.
∞∑

n=1

(−1)n

n1.1 ln(n + 1)

solution Consider the corresponding positive series
∞∑

n=1

1

n1.1 ln(n + 1)
. Because

1

n1.1 ln(n + 1)
<

1

n1.1
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and
∞∑

n=1

1

n1.1
is a convergent p-series, we can conclude by the Comparison Test that

∞∑
n=1

(−1)n

n1.1 ln(n + 1)
also converges.

Thus,
∞∑

n=1

(−1)n

n1.1 ln(n + 1)
converges absolutely.

56.
∞∑

n=1

cos
(
π
4 + πn

)
√

n

solution Note

cos
(π

4
+ πn

)
= cos

π

4
cos nπ − sin

π

4
sin nπ = (−1)n

√
2

2
.

Therefore,

∞∑
n=1

cos
(
π
4 + πn

)
√

n
=

∞∑
n=1

(−1)n√
n

2√
2

= 2√
2

∞∑
n=1

(−1)n√
n

.

Now, the sequence { 1√
n
} is decreasing and converges to 0 as n → ∞. Therefore,

∞∑
n=1

cos
(
π
4 + πn

)
√

n
converges by the

Leibniz Test. However, the corresponding positive series is a divergent p-series (p = 1
2 ), so the original series converges

conditionally.

57.
∞∑

n=1

cos
(
π
4 + 2πn

)
√

n

solution cos
(
π
4 + 2πn

) = cos π
4 =

√
2

2 , so

∞∑
n=1

cos
(
π
4 + 2πn

)
√

n
=

√
2

2

∞∑
n=1

1√
n

.

This is a divergent p-series, so the series
∞∑

n=1

cos
(
π
4 + 2πn

)
√

n
diverges.

58. Use a computer algebra system to approximate
∞∑

n=1

(−1)n

n3 + √
n

to within an error of at most 10−5.

solution The sequence { 1
n3+√

n
} is decreasing and converges to 0, so the series

∑∞
n=1

(−1)n

n3+√
n

converges by the

Leibniz Test. Using the error bound for an alternating series,∣∣∣∣∣∣SN −
∞∑

n=1

(−1)n

n3 + √
n

∣∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)3 + √
N + 1

.

If we want an approximation with an error of at most 10−5, we must choose N such that

1

(N + 1)3 + √
N + 1

< 10−5 or (N + 1)3 + √
N + 1 > 105.

For N = 45, (N + 1)3 + √
N + 1 = 97,342.8 < 105, and for N = 46, (N + 1)3 + √

N + 1 = 103,829.9 > 105. The
smallest acceptable value for N is therefore N = 46. Using a computer algebra system, we find

∞∑
n=1

(−1)n

n3 + √
n

≈ S46 = −0.418452236.

59. Catalan’s constant is defined by K =
∞∑

k=0

(−1)k

(2k + 1)2
.

(a) How many terms of the series are needed to calculate K with an error of less than 10−6?

(b) Carry out the calculation.
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solution Using the error bound for an alternating series, we have

|SN − K| ≤ 1

(2(N + 1) + 1)2
= 1

(2N + 3)2
.

For accuracy to three decimal places, we must choose N so that

1

(2N + 3)2
< 5 × 10−3 or (2N + 3)2 > 2000.

Solving for N yields

N >
1

2

(√
2000 − 3

)
≈ 20.9.

Thus,

K ≈
21∑

k=0

(−1)k

(2k + 1)2
= 0.915707728.

60. Give an example of conditionally convergent series
∞∑

n=1

an and
∞∑

n=1

bn such that
∞∑

n=1

(an + bn) converges absolutely.

solution Let an = (−1)n

n and bn = (−1)n+1

n . The corresponding alternating series converge by the Leibniz Test; how-

ever, the corresponding positive series are the divergent harmonic series. Thus,
∞∑

n=1

an and
∞∑

n=1

bn converge conditionally.

On the other hand, the series

∞∑
n=1

(an + bn) =
∞∑

n=1

(
(−1)n

n
+ (−1)n+1

n

)
=

∞∑
n=1

(−1)n
(

1

n
+ −1

n

)
=

∞∑
n=1

0

converges absolutely.

61. Let
∞∑

n=1

an be an absolutely convergent series. Determine whether the following series are convergent or divergent:

(a)
∞∑

n=1

(
an + 1

n2

)
(b)

∞∑
n=1

(−1)nan

(c)
∞∑

n=1

1

1 + a2
n

(d)
∞∑

n=1

|an|
n

solution Because
∞∑

n=1

an converges absolutely, we know that
∞∑

n=1

an converges and that
∞∑

n=1

|an| converges.

(a) Because we know that
∞∑

n=1

an converges and the series
∞∑

n=1

1

n2
is a convergent p-series, the sum of these two series,

∞∑
n=1

(
an + 1

n2

)
also converges.

(b) We have,

∞∑
n=1

∣∣(−1)nan

∣∣ =
∞∑

n=1

|an|

Because
∞∑

n=1

|an| converges, it follows that
∞∑

n=1

(−1)nan converges absolutely, which implies that
∞∑

n=1

(−1)nan converges.

(c) Because
∞∑

n=1

an converges, limn→∞ an = 0. Therefore,

lim
n→∞

1

1 + a2
n

= 1

1 + 02
= 1 	= 0,

and the series
∞∑

n=1

1

1 + a2
n

diverges by the Divergence Test.
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(d) |an|
n ≤ |an| and the series

∞∑
n=1

|an| converges, so the series
∞∑

n=1

|an|
n

also converges by the Comparison Test.

62. Let {an} be a positive sequence such that lim
n→∞

n
√

an = 1
2 . Determine whether the following series converge or

diverge:

(a)
∞∑

n=1

2an (b)
∞∑

n=1

3nan (c)
∞∑

n=1

√
an

solution
(a)

L = lim
n→∞

n
√

2an = lim
n→∞

n
√

2 n
√

an = 1 · 1

2
= 1

2
.

Because L < 1, the series converges by the Root Test.
(b)

L = lim
n→∞

n
√

3nan = lim
n→∞ 3 n

√
an = 3 · 1

2
= 3

2
.

Because L > 1, the series diverges by the Root Test.
(c)

L = lim
n→∞

n

√√
an = lim

n→∞
√

n
√

an =
√

1

2
.

Because L < 1, the series converges by the Root Test.

In Exercises 63–70, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

63.
∞∑

n=1

n5

5n

solution With an = n5

5n ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)5

5n+1
· 5n

n5 = 1

5

(
1 + 1

n

)5
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
lim

n→∞

(
1 + 1

n

)5
= 1

5
· 1 = 1

5
.

Because ρ < 1, the series converges by the Ratio Test.

64.
∞∑

n=1

√
n + 1

n8

solution With an =
√

n+1
n8 ,

∣∣∣∣an+1

an

∣∣∣∣ =
√

n + 2

(n + 1)8
· n8
√

n + 1
=
√

n + 2

n + 1

(
n

n + 1

)8
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 18 = 1.

Because ρ = 1, the Ratio Test is inconclusive.

65.
∞∑

n=1

1

n2n + n3

solution With an = 1
n2n+n3 ,

∣∣∣∣an+1

an

∣∣∣∣ = n2n + n3

(n + 1)2n+1 + (n + 1)3
=

n2n
(

1 + n2

2n

)
(n + 1)2n+1

(
1 + (n+1)2

2n+1

) = 1

2
· n

n + 1
· 1 + n2

2n

1 + (n+1)2

2n+1

,
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and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
· 1 · 1 = 1

2
.

Because ρ < 1, the series converges by the Ratio Test.

66.
∞∑

n=1

n4

n!

solution With an = n4

n! ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)4

(n + 1)! · n!
n4

= (n + 1)3

n4
and ρ = lim

n→∞
an+1

an
= 0.

Because ρ < 1, the series converges by the Ratio Test.

67.
∞∑

n=1

2n2

n!

solution With an = 2n2

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = 2(n+1)2

(n + 1)! · n!
2n2 = 22n+1

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞.

Because ρ > 1, the series diverges by the Ratio Test.

68.
∞∑

n=4

ln n

n3/2

solution With an = ln n
n3/2 ,

∣∣∣∣an+1

an

∣∣∣∣ = ln(n + 1)

(n + 1)3/2
· n3/2

ln n
=
(

n

n + 1

)3/2 ln(n + 1)

ln n
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 13/2 · 1 = 1.

Because ρ = 1, the Ratio Test is inconclusive.

69.
∞∑

n=1

(n

2

)n 1

n!
solution With an = (

n
2

)n 1
n! ,∣∣∣∣an+1

an

∣∣∣∣ =
(

n + 1

2

)n+1 1

(n + 1)! ·
(

2

n

)n

n! = 1

2

(
n + 1

n

)n

= 1

2

(
1 + 1

n

)n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
e.

Because ρ = e
2 > 1, the series diverges by the Ratio Test.

70.
∞∑

n=1

(n

4

)n 1

n!
solution With an = (

n
4

)n 1
n! ,∣∣∣∣an+1

an

∣∣∣∣ =
(

n + 1

4

)n+1 1

(n + 1)! ·
(

4

n

)n

n! = 1

4

(
n + 1

n

)n

= 1

4

(
1 + 1

n

)n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

4
e.

Because ρ = e
4 < 1, the series converges by the Ratio Test.
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In Exercises 71–74, apply the Root Test to determine convergence or divergence, or state that the Root Test is inconclusive.

71.
∞∑

n=1

1

4n

solution With an = 1
4n ,

L = lim
n→∞

n
√

an = lim
n→∞

n

√
1

4n
= 1

4
.

Because L < 1, the series converges by the Root Test.

72.
∞∑

n=1

(
2

n

)n

solution With an =
(

2
n

)n
,

L = lim
n→∞

n

√(
2

n

)n

= lim
n→∞

2

n
= 0.

Because L < 1, the series converges by the Root Test.

73.
∞∑

n=1

(
3

4n

)n

solution With an =
(

3
4n

)n
,

L = lim
n→∞

n
√

an = lim
n→∞

n

√(
3

4n

)n

= lim
n→∞

3

4n
= 0.

Because L < 1, the series converges by the Root Test.

74.
∞∑

n=1

(
cos

1

n

)n3

solution With an =
(

cos 1
n

)n3

,

L = lim
n→∞

n
√

an = lim
n→∞

n

√
cos

(
1

n

)n3

= lim
n→∞ cos

(
1

n

)n2

= lim
x→∞ cos

(
1

x

)x2

.

Now,

ln L = lim
x→∞ x2 ln cos

(
1

x

)
= lim

x→∞
ln cos

(
1
x

)
1
x2

= lim
x→∞

1

cos
(

1
x

) (− sin
(

1
x

)) (
− 1

x2

)
− 2

x3

= −1

2
lim

x→∞
1

cos
(

1
x

) · lim
x→∞

sin
(

1
x

)
1
x

= −1

2
· 1 · 1 = −1

2
.

Therefore, L = e−1/2. Because L < 1, the series converges by the Root Test.

In Exercises 75–92, determine convergence or divergence using any method covered in the text.

75.
∞∑

n=1

(
2

3

)n

solution This is a geometric series with ratio r = 2
3 < 1; hence, the series converges.

76.
∞∑

n=1

π7n

e8n

solution This is a geometric series with ratio r = π7

e8 ≈ 1.013, so it diverges.
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77.
∞∑

n=1

e−0.02n

solution This is a geometric series with common ratio r = 1
e0.02 ≈ 0.98 < 1; hence, the series converges.

78.
∞∑

n=1

ne−0.02n

solution With an = ne−0.02n,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)e−0.02(n+1)

ne−0.02n
= n + 1

n
e−0.02,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · e−0.02 = e−0.02.

Because ρ < 1, the series converges by the Ratio Test.

79.
∞∑

n=1

(−1)n−1
√

n + √
n + 1

solution In this alternating series, an = 1√
n+√

n+1
. The sequence {an} is decreasing, and

lim
n→∞ an = 0;

therefore the series converges by the Leibniz Test.

80.
∞∑

n=10

1

n(ln n)3/2

solution Let f (x) = 1
x(ln x)3/2 . This function is continuous, positive and decreasing for x > e−3/2 and thus for

x ≥ 10; therefore, the Integral Test applies. Now,

∫ ∞
10

dx

x(ln x)3/2
= lim

R→∞

∫ R

10

dx

x(ln x)3/2
= lim

R→∞

∫ ln R

ln 10

1

u3/2
du

= lim
R→∞

(−2√
u

∣∣∣∣ln R

ln 10

)
= 2 lim

R→∞

(
1√

ln 10
− 1√

ln R

)
= 2.

The integral converges; hence, the series converges as well.

81.
∞∑

n=2

(−1)n

ln n

solution The sequence an = 1
ln n

is decreasing for n ≥ 10 and

lim
n→∞ an = 0;

therefore, the series converges by the Leibniz Test.

82.
∞∑

n=1

en

n!

solution With an = en

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = en+1

(n + 1)! · n!
en

= e

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0.

Because ρ < 1, the series converges by the Ratio Test.
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83.
∞∑

n=1

1

n
√

n + ln n

solution For n ≥ 1,

1

n
√

n + ln n
≤ 1

n
√

n
= 1

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series, so the series

∞∑
n=1

1

n
√

n + ln n
converges by the Comparison Test.

84.
∞∑

n=1

1
3√n(1 + √

n)

solution Apply the Limit Comparison Test with an = 1
3√n(1+√

n)
and bn = 1

n5/6 . Then,

L = lim
n→∞

1
3√n(1+√

n)

1
n5/6

= lim
n→∞

n5/6

3√n + n5/6
= lim

n→∞
1

1√
n

+ 1
= 1.

The series
∞∑

n=1

1

n5/6
is a divergent p-series. Because L > 0, the series

∞∑
n=1

1
3√n(1 + √

n)
also diverges by the Limit

Comparison Test.

85.
∞∑

n=1

(
1√
n

− 1√
n + 1

)

solution This series telescopes:

∞∑
n=1

(
1√
n

− 1√
n + 1

)
=
(

1 − 1√
2

)
+
(

1√
2

− 1√
3

)
+
(

1√
3

− 1√
4

)
+ . . .

so that the nth partial sum Sn is

Sn =
(

1 − 1√
2

)
+
(

1√
2

− 1√
3

)
+
(

1√
3

− 1√
4

)
+ · · · +

(
1√
n

− 1√
n + 1

)
= 1 − 1√

n + 1

and then

∞∑
n=1

(
1√
n

− 1√
n + 1

)
= lim

n→∞ Sn = 1 − lim
n→∞

1√
n + 1

= 1

86.
∞∑

n=1

(
ln n − ln(n + 1)

)
solution This series telescopes:

∞∑
n=1

(
ln n − ln(n + 1)

) = (ln 1 − ln 2) + (ln 2 − ln 3) + (ln 3 − ln 4) + . . .

so that the nth partial sum Sn is

Sn = (ln 1 − ln 2) + (ln 2 − ln 3) + (ln 3 − ln 4) + · · · + (ln n − ln(n + 1))

= ln 1 − ln(n + 1) = − ln(n + 1)

and then

∞∑
n=1

(
ln n − ln(n + 1)

) = lim
n→∞ Sn = − lim

n→∞ ln(n + 1) = ∞

so the series diverges.
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87.
∞∑

n=1

1

n + √
n

solution For n ≥ 1,
√

n ≤ n, so that

∞∑
n=1

1

n + √
n

≥
∞∑

n=1

1

2n

which diverges since it is a constant multiple of the harmonic series. Thus
∞∑

n=1

1

n + √
n

diverges as well, by the Comparison

Test.

88.
∞∑

n=2

cos(πn)

n2/3

solution cos(πn) = (−1)n, so

∞∑
n=2

cos(πn)

n2/3
=

∞∑
n=2

(−1)n

n2/3
.

The sequence an = 1
n2/3 is decreasing and

lim
n→∞ an = 0;

therefore, the series converges by the Leibniz Test.

89.
∞∑

n=2

1

nln n

solution For n ≥ N large enough, ln n ≥ 2 so that

∞∑
n=N

1

nln n
≤

∞∑
n=N

1

n2

which is a convergent p-series. Thus by the Comparison Test,
∞∑

n=N

1

nln n
also converges; adding back in the terms for

n < N does not affect convergence.

90.
∞∑

n=2

1

ln3 n

solution For N large enough, ln n ≤ n1/4 when n ≥ N so that

∞∑
n=N

1

ln3 n
>

∞∑
n=N

1

n3/4

which is a divergent p-series. Thus by the Comparison Test,
∞∑

n=N

1

ln3 n
diverges; adding back in the terms for n < N

does not affect this result.

91.
∞∑

n=1

sin2 π

n

solution For all x > 0, sin x < x. Therefore, sin2 x < x2, and for x = π
n ,

sin2 π

n
<

π2

n2
= π2 · 1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=1

sin2 π

n
also converges by the Comparison Test.
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92.
∞∑

n=0

22n

n!

solution With an = 22n

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = 22(n+1)

(n + 1)! · n!
22n

= 4

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0.

Because ρ < 1, the series converges by the Ratio Test.

In Exercises 93–98, find the interval of convergence of the power series.

93.
∞∑

n=0

2nxn

n!

solution With an = 2nxn

n! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1xn+1

(n + 1)! · n!
2nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x · 2

n

∣∣∣∣ = 0

Then ρ < 1 for all x, so that the radius of convergence is R = ∞, and the series converges for all x.

94.
∞∑

n=0

xn

n + 1

solution With an = xn

n+1 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x
n+1

n + 2
· n + 1

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x · n + 1

n + 2

∣∣∣∣ = lim
n→∞

∣∣∣∣x · 1 + 1/n

1 + 2/n

∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely for |x| < 1, or

−1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=0

1

n + 1
=

∞∑
n=1

1

n
, which is the divergent harmonic series.

For the endpoint x = −1, the series becomes
∞∑

n=0

(−1)n

n + 1
, which converges by the Leibniz Test. The series

∞∑
n=0

xn

n + 1

therefore converges for −1 ≤ x < 1.

95.
∞∑

n=0

n6

n8 + 1
(x − 3)n

solution With an = n6(x−3)n

n8+1
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)6(x − 3)n+1

(n + 1)8 − 1
· n8 + 1

n6(x − 3)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 3) · (n + 1)6(n8 + 1)

n6((n + 1)8 + 1)

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 3) · n14 + terms of lower degree

n14 + terms of lower degree

∣∣∣∣∣ = |x − 3|

Then ρ < 1 when |x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely for |x − 3| < 1, or

2 < x < 4. For the endpoint x = 4, the series becomes
∞∑

n=0

n6

n8 + 1
, which converges by the Comparison Test comparing

with the convergent p-series
∞∑

n=1

1

n2
. For the endpoint x = 2, the series becomes

∞∑
n=0

n6(−1)n

n8 + 1
, which converges by the

Leibniz Test. The series
∞∑

n=0

n6(x − 3)n

n8 + 1
therefore converges for 2 ≤ x ≤ 4.
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96.
∞∑

n=0

nxn

solution With an = nxn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)xn+1

nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x · n + 1

n

∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges for |x| < 1, or −1 < x < 1. For

the endpoint x = 1, the series becomes
∞∑

n=0

n, which diverges by the Divergence Test. For the endpoint x = −1, the

series becomes
∑∞

n=0(−1)nn, which also diverges by the Divergence Test. The series
∞∑

n=0

nxn therefore converges for

−1 < x < 1.

97.
∞∑

n=0

(nx)n

solution With an = nnxn, and assuming x 	= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x(n + 1) ·
(

n + 1

n

)n∣∣∣∣ = ∞

since
(

n+1
n

)n =
(

1 + 1
n

)n
converges to e and the (n + 1) term diverges to ∞. Thus ρ < 1 only when x = 0, so the

series converges only for x = 0.

98.
∞∑

n=0

(2x − 3)n

n ln n

solution With an = (2x−3)n

n ln n
, and using L’Hôpital’s Rule,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (2x − 3)n+1

(n + 1) ln(n + 1)
· n ln n

(2x − 3)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣(2x − 3)
n ln n

(n + 1) ln(n + 1)

∣∣∣∣ = lim
n→∞

∣∣∣∣(2x − 3)
1 + ln n

1 + ln(n + 1)

∣∣∣∣
= lim

n→∞

∣∣∣∣(2x − 3)
1/n

1/(n + 1)

∣∣∣∣ = lim
n→∞

∣∣∣∣(2x − 3)
n + 1

n

∣∣∣∣ = |2x − 3|

Then ρ < 1 when |2x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely for |2x − 3| < 1, or

1 < x < 2. For the endpoint x = 2, the series becomes
∞∑

n=0

1

n ln n
, which diverges by the Integral Test. For the endpoint

x = −1, the series becomes
∞∑

n=0

(−1)n

n ln n
, which converges by the Leibniz Test. The series

∞∑
n=0

(2x − 3)n

n ln n
therefore

converges for 1 ≤ x < 2.

99. Expand f (x) = 2

4 − 3x
as a power series centered at c = 0. Determine the values of x for which the series converges.

solution Write

2

4 − 3x
= 1

2

1

1 − 3
4x

.

Substituting 3
4x for x in the Maclaurin series for 1

1−x
, we obtain

1

1 − 3
4x

=
∞∑

n=0

(
3

4

)n

xn.

This series converges for
∣∣∣ 3

4x

∣∣∣ < 1, or |x| < 4
3 . Hence, for |x| < 4

3 ,

2

4 − 3x
= 1

2

∞∑
n=0

(
3

4

)n

xn.
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100. Prove that

∞∑
n=0

ne−nx = e−x

(1 − e−x)2

Hint: Express the left-hand side as the derivative of a geometric series.

solution For x > 0,
∞∑

n=0

e−nx =
∞∑

n=0

(e−x)n is a convergent geometric series with ratio r = e−x ; hence,

∞∑
n=0

e−nx = 1

1 − e−x
.

Differentiating term-by-term then yields

∞∑
n=0

(−ne−nx
) = − e−x

(1 − e−x)2
.

Therefore, for x > 0,

∞∑
n=0

ne−nx = e−x(
1 − e−x

)2
.

101. Let F(x) =
∞∑

k=0

x2k

2k · k! .

(a) Show that F(x) has infinite radius of convergence.
(b) Show that y = F(x) is a solution of

y′′ = xy′ + y, y(0) = 1, y′(0) = 0

(c) Plot the partial sums SN for N = 1, 3, 5, 7 on the same set of axes.

solution

(a) With ak = x2k

2k ·k! , ∣∣∣∣ak+1

ak

∣∣∣∣ = |x|2k+2

2k+1 · (k + 1)! · 2k · k!
|x|2k

= x2

2(k + 1)
,

and

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = x2 · 0 = 0.

Because ρ < 1 for all x, we conclude that the series converges for all x; that is, R = ∞.
(b) Let

y = F(x) =
∞∑

k=0

x2k

2k · k! .

Then

y′ =
∞∑

k=1

2kx2k−1

2kk! =
∞∑

k=1

x2k−1

2k−1(k − 1)! ,

y′′ =
∞∑

k=1

(2k − 1)x2k−2

2k−1(k − 1)! ,

and

xy′ + y = x

∞∑
k=1

x2k−1

2k−1(k − 1)! +
∞∑

k=0

x2k

2kk! =
∞∑

k=1

x2k

2k−1(k − 1)! + 1 +
∞∑

k=1

x2k

2kk!

= 1 +
∞∑

k=1

(2k + 1)x2k

2kk! =
∞∑

k=0

(2k + 1)x2k

2kk! =
∞∑

k=1

(2k − 1)x2k−2

2k−1(k − 1)! = y′′.
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Moreover,

y(0) = 1 +
∞∑

k=1

02k

2kk! = 1 and y′(0) =
∞∑

k=1

02k−1

2k−1(k − 1)! = 0.

Thus,
∞∑

k=0

x2k

2kk! is the solution to the equation y′′ = xy′ + y satisfying y(0) = 1, y′(0) = 0.

(c) The partial sums S1, S3, S5 and S7 are plotted in the figure below.

y

x
−1−2 1

1

2

3

4

5

6

7

2

102. Find a power series P(x) =
∞∑

n=0

anxn that satisfies the Laguerre differential equation

xy′′ + (1 − x)y′ − y = 0

with initial condition satisfying P(0) = 1.

solution Let

y = P(x) =
∞∑

n=0

anxn.

Then,

y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n − 1)anxn−2,

and

xy′′ + (1 − x)y′ − y =
∞∑

n=2

n(n − 1)anxn−1 +
∞∑

n=1

nanxn−1 −
∞∑

n=1

nanxn −
∞∑

n=0

anxn

=
∞∑

n=1

(n + 1)nan+1xn +
∞∑

n=0

(n + 1)an+1xn −
∞∑

n=1

nanxn −
∞∑

n=0

anxn

= (a1 − a0) +
∞∑

n=1

[
(n + 1)2an+1 − (n + 1)an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus

a1 = a0 and an+1 = an

n + 1
.

Now, y(0) = P(0) = a0, so to satisfy the initial condition P(0) = 1, we must set a0 = 1. Then,

a1 = a0 = 1;

a2 = a1

2
= 1

2
;

a3 = a2

3
= 1

6
= 1

3! ;

a4 = a3

4
= 1

4! ;

and, in general, an = 1
n! . Thus,

P(x) =
∞∑

n=0

xn

n! = ex .
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In Exercises 103–112, find the Taylor series centered at c.

103. f (x) = e4x , c = 0

solution Substituting 4x for x in the Maclaurin series for ex yields

e4x =
∞∑

n=0

(4x)n

n! =
∞∑

n=0

4n

n! xn.

104. f (x) = e2x , c = −1

solution Write:

e2x = e2(x+1)−2 = e−2e2(x+1).

Substituting 2(x + 1) for x in the Maclaurin series for ex yields

e2(x+1) =
∞∑

n=0

(2(x + 1))n

n! =
∞∑

n=0

2n

n! (x + 1)n;

hence,

e2x = e−2
∞∑

n=0

2n(x + 1)n

n! .

105. f (x) = x4, c = 2

solution We have

f ′(x) = 4x3 f ′′(x) = 12x2 f ′′′(x) = 24x f (4)(x) = 24

and all higher derivatives are zero, so that

f (2) = 24 = 16 f ′(2) = 4 · 23 = 32 f ′′(2) = 12 · 22 = 48 f ′′′(2) = 24 · 2 = 48 f (4)(2) = 24

Thus the Taylor series centered at c = 2 is

4∑
n=0

f (n)(2)

n! (x − 2)n = 16 + 32

1! (x − 2) + 48

2! (x − 2)2 + 48

3! (x − 2)3 + 24

4! (x − 2)4

= 16 + 32(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4

106. f (x) = x3 − x, c = −2

solution We have

f ′(x) = 3x2 − 1 f ′′(x) = 6x f ′′′(x) = 6

and all higher derivatives are zero, so that

f (−2) = −8 + 2 = −6 f ′(−2) = 3(−2)2 − 1 = 11 f ′′(−2) = 6(−2) = −12 f ′′′(−2) = 6

Thus the Taylor series centered at c = −2 is

3∑
n=0

f (n)(−2)

n! (x + 2)n = −6 + 11

1! (x + 2) + −12

2! (x + 2)2 + 6

3! (x + 2)3

= −6 + 11(x + 2) − 6(x + 2)2 + (x + 2)3

107. f (x) = sin x, c = π

solution We have

f (4n)(x) = sin x f (4n+1)(x) = cos x f (4n+2)(x) = − sin x f (4n+3)(x) = − cos x

so that

f (4n)(π) = sin π = 0 f (4n+1)(π) = cos π = −1 f (4n+2)(π) = − sin π = 0 f (4n+3)(π) = − cos π = 1
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Then the Taylor series centered at c = π is

∞∑
n=0

f (n)(π)

n! (x − π)n = −1

1! (x − π) + 1

3! (x − π)3 + −1

5! (x − π)5 + 1

7! (x − π)7 − . . .

= −(x − π) + 1

6
(x − π)3 − 1

120
(x − π)5 + 1

5040
(x − π)7 − . . .

108. f (x) = ex−1, c = −1

solution Write

ex−1 = ex+1−1−1 = e−2ex+1.

Substituting x + 1 for x in the Maclaurin series for ex yields

ex+1 =
∞∑

n=0

(x + 1)n

n! ;

hence,

ex−1 = e−2
∞∑

n=0

(x + 1)n

n! =
∞∑

n=0

(x + 1)n

n!e2
.

109. f (x) = 1

1 − 2x
, c = −2

solution Write

1

1 − 2x
= 1

5 − 2(x + 2)
= 1

5

1

1 − 2
5 (x + 2)

.

Substituting 2
5 (x + 2) for x in the Maclaurin series for 1

1−x
yields

1

1 − 2
5 (x + 2)

=
∞∑

n=0

2n

5n
(x + 2)n;

hence,

1

1 − 2x
= 1

5

∞∑
n=0

2n

5n
(x + 2)n =

∞∑
n=0

2n

5n+1
(x + 2)n.

110. f (x) = 1

(1 − 2x)2
, c = −2

solution Note that

d

dx

1

1 − 2x
= 2

1 − 2x

so that we can derive the Taylor series for f (x) by differentiating the Taylor series for 1
1−2x

, computed in the previous
exercise, and dividing by 2. Thus

1

(1 − 2x)2
= 1

2
· d

dx

⎛
⎝ ∞∑

n=0

2n

5n+1
(x + 2)n

⎞
⎠

= 1

2

∞∑
n=1

n2n

5n+1
(x + 2)n−1 = 2

50

∞∑
n=1

n2n−1

5n−1
(x + 2)n−1

= 1

25

∞∑
k=0

(k + 1)2k

5k
(x + 2)k
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111. f (x) = ln
x

2
, c = 2

solution Write

ln
x

2
= ln

(
(x − 2) + 2

2

)
= ln

(
1 + x − 2

2

)
.

Substituting x−2
2 for x in the Maclaurin series for ln(1 + x) yields

ln
x

2
=

∞∑
n=1

(−1)n+1
(

x−2
2

)n

n
=

∞∑
n=1

(−1)n+1(x − 2)n

n · 2n
.

This series is valid for |x − 2| < 2.

112. f (x) = x ln
(

1 + x

2

)
, c = 0

solution Substituting x
2 for x in the Maclaurin series for ln(1 + x) yields

ln
(

1 + x

2

)
=

∞∑
n=1

(−1)n−1 ( x
2

)n
n

=
∞∑

n=1

(−1)n−1xn

n2n
.

Thus,

x ln
(

1 + x

2

)
= x

∞∑
n=1

(−1)n−1xn

n2n
=

∞∑
n=1

(−1)n−1xn+1

n2n
.

In Exercises 113–116, find the first three terms of the Maclaurin series of f (x) and use it to calculate f (3)(0).

113. f (x) = (x2 − x)ex2

solution Substitute x2 for x in the Maclaurin series for ex to get

ex2 = 1 + x2 + 1

2
x4 + 1

6
x6 + . . .

so that the Maclaurin series for f (x) is

(x2 − x)ex2 = x2 + x4 + 1

2
x6 + · · · − x − x3 − 1

2
x5 − · · · = −x + x2 − x3 + x4 + . . .

The coefficient of x3 is

f ′′′(0)

3! = −1

so that f ′′′(0) = −6.

114. f (x) = tan−1(x2 − x)

solution Substitute x2 − x for x in the Maclaurin series for tan−1 x to get

tan−1(x2 − x) = (x2 − x) − 1

3
(x2 − x)3 + · · · = −x + x2 + 1

3
x3 + . . .

The coefficient of x3 is

f ′′′(0)

3! = 1

3

so that f ′′′(0) = 3! 1
3 = 2.

115. f (x) = 1

1 + tan x

solution Substitute − tan x in the Maclaurin series for 1
1−x

to get

1

1 + tan x
= 1 − tan x + (tan x)2 − (tan x)3 + . . .

We have not yet encountered the Maclaurin series for tan x. We need only the terms up through x3, so compute

tan′(x) = sec2 x tan′′(x) = 2(tan x) sec2 x tan′′′(x) = 2(1 + tan2 x) sec2 x + 4(tan2 x) sec2 x
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so that

tan′(0) = 1 tan′′(0) = 0 tan′′′(0) = 2

Then the Maclaurin series for tan x is

tan x = tan 0 + tan′(0)

1! x + tan′′(0)

2! x2 + tan′′′(0)

3! x3 + · · · = x + 1

3
x3 + . . .

Substitute these into the series above to get

1

1 + tan x
= 1 −

(
x + 1

3
x3
)

+
(

x + 1

3
x3
)2

−
(

x + 1

3
x3
)3

+ . . .

= 1 − x − 1

3
x3 + x2 − x3 + higher degree terms

= 1 − x + x2 − 4

3
x3 + higher degree terms

The coefficient of x3 is

f ′′′(0)

3! = −4

3

so that

f ′′′(0) = −6 · 4

3
= −8

116. f (x) = (sin x)
√

1 + x

solution The binomial series for
√

1 + x is

√
1 + x = (1 + x)1/2 =

(
1/2

0

)
+
(

1/2

1

)
x +

(
1/2

2

)
x2 +

(
1/2

3

)
x3 + . . .

= 1 + 1

2
x +

1
2

(
− 1

2

)
2

x2 +
1
2

(
− 1

2

) (
− 3

2

)
3! x3 + . . .

= 1 + 1

2
x − 1

8
x2 + 1

16
x3 + . . .

So, multiply the first few terms of the two Maclaurin series together:

(sin x)
√

1 + x =
(

x − x3

6

)(
1 + 1

2
x − 1

8
x2 + 1

16
x3
)

= x + 1

2
x2 − 1

8
x3 − 1

6
x3 + higher degree terms

= x + 1

2
x2 − 7

24
x3 + higher degree terms

The coefficient of x3 is

f ′′′(0)

3! = − 7

24

so that

f ′′′(0) = −6 · 7

24
= −7

4

117. Calculate
π

2
− π3

233! + π5

255! − π7

277! + · · · .

solution We recognize that

π

2
− π3

233! + π5

255! − π7

277! + · · · =
∞∑

n=0

(−1)n
(π/2)2n+1

(2n + 1)!
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is the Maclaurin series for sin x with x replaced by π/2. Therefore,

π

2
− π3

233! + π5

255! − π7

277! + · · · = sin
π

2
= 1.

118. Find the Maclaurin series of the function F(x) =
∫ x

0

et − 1

t
dt .

solution Subtracting 1 from the Maclaurin series for et yields

et − 1 =
∞∑

n=0

tn

n! − 1 = 1 +
∞∑

n=1

tn

n! − 1 =
∞∑

n=1

tn

n! .

Thus,

et − 1

t
= 1

t

∞∑
n=1

tn

n! =
∞∑

n=1

tn−1

n! .

Finally, integrating term-by-term yields

∫ x

0

et − 1

t
dt =

∫ x

0

∞∑
n=1

tn−1

n! dt =
∞∑

n=1

∫ x

0

tn−1

n! dt =
∞∑

n=1

xn

n! n .
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