
March 30, 2011

8 FURTHER APPLICATIONS
OF THE INTEGRAL AND
TAYLOR POLYNOMIALS

8.1 Arc Length and Surface Area

Preliminary Questions
1. Which integral represents the length of the curve y = cos x between 0 and π?∫ π

0

√
1 + cos2 x dx,

∫ π

0

√
1 + sin2 x dx

solution Let y = cos x. Then y′ = − sin x, and 1 + (y′)2 = 1 + sin2 x. Thus, the length of the curve y = cos x

between 0 and π is ∫ π

0

√
1 + sin2 x dx.

2. Use the formula for arc length to show that for any constant C, the graphs y = f (x) and y = f (x) + C have the
same length over every interval [a, b]. Explain geometrically.

solution The graph of y = f (x) + C is a vertical translation of the graph of y = f (x); hence, the two graphs should
have the same arc length. We can explicitly establish this as follows:

length of y = f (x) + C =
∫ b

a

√
1 +

[
d

dx
(f (x) + C)

]2
dx =

∫ b

a

√
1 + [f ′(x)]2 dx = length of y = f (x).

3. Use the formula for arc length to show that the length of a graph over [1, 4] cannot be less than 3.

solution Note that f ′(x)2 ≥ 0, so that
√

1 + [f ′(x)]2 ≥ √
1 = 1. Then the arc length of the graph of f (x) on

[1, 4] is ∫ 4

1

√
1 + [f ′(x)]2 dx ≥

∫ 4

1
1 dx = 3

Exercises
1. Express the arc length of the curve y = x4 between x = 2 and x = 6 as an integral (but do not evaluate).

solution Let y = x4. Then y′ = 4x3 and

s =
∫ 6

2

√
1 + (4x3)2 dx =

∫ 6

2

√
1 + 16x6 dx.

2. Express the arc length of the curve y = tan x for 0 ≤ x ≤ π
4 as an integral (but do not evaluate).

solution Let y = tan x. Then y′ = sec2 x, and

s =
∫ π/4

0

√
1 + (sec2 x)2 dx =

∫ π/4

0

√
1 + sec4 x dx.

3. Find the arc length of y = 1
12x3 + x−1 for 1 ≤ x ≤ 2. Hint: Show that 1 + (y′)2 =

(
1
4x2 + x−2

)2
.

solution Let y = 1

12
x3 + x−1. Then y′ = x2

4
x−2, and

(y′)2 + 1 =
(

x2

4
− x−2

)2

+ 1 = x4

16
− 1

2
+ x−4 + 1 = x4

16
+ 1

2
+ x−4 =

(
x2

4
+ x−2

)2

.
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Thus,

s =
∫ 2

1

√
1 + (y′)2 dx =

∫ 2

1

√√√√(
x2

4
+ 1

x2

)2

dx =
∫ 2

1

∣∣∣∣∣x
2

4
+ 1

x2

∣∣∣∣∣ dx

=
∫ 2

1

(
x2

4
+ 1

x2

)
dx since

x2

4
+ 1

x2
> 0

=
(

x3

12
− 1

x

) ∣∣∣∣2
1

= 13

12
.

4. Find the arc length of y =
(x

2

)4 + 1

2x2
over [1, 4]. Hint: Show that 1 + (y′)2 is a perfect square.

solution Let y =
(x

2

)4 + 1

2x2
. Then

y′ = 4
(x

2

)3
(

1

2

)
− 1

x3
= x3

4
− 1

x3

and

(y′)2 + 1 =
(

x3

4
− 1

x3

)2

+ 1 = x6

16
− 1

2
+ 1

x6
+ 1 = x6

16
+ 1

2
+ 1

x6
=
(

x3

4
+ 1

x3

)2

.

Hence,

s =
∫ 4

1

√
1 + y′2 dx =

∫ 4

1

√√√√(
x3

4
+ 1

x3

)2

dx =
∫ 4

1

∣∣∣∣∣x
3

4
+ 1

x3

∣∣∣∣∣ dx

=
∫ 4

1

(
x3

4
+ 1

x3

)
dx since

x3

4
+ 1

x3
> 0 on [1, 4]

=
(

x4

16
+ x−2

−2

) ∣∣∣∣4
1

= 525

32
.

In Exercises 5–10, calculate the arc length over the given interval.

5. y = 3x + 1, [0, 3]

solution Let y = 3x + 1. Then y′ = 3, and s =
∫ 3

0

√
1 + 9 dx = 3

√
10.

6. y = 9 − 3x, [1, 3]

solution Let y = 9 − 3x. Then y′ = −3, and s =
∫ 3

1

√
1 + 9 dx = 3

√
10 − √

10 = 2
√

10.

7. y = x3/2, [1, 2]
solution Let y = x3/2. Then y′ = 3

2x1/2, and

s =
∫ 2

1

√
1 + 9

4
x dx = 8

27

(
1 + 9

4
x

)3/2 ∣∣∣∣2
1

= 8

27

((
11

2

)3/2
−
(

13

4

)3/2
)

= 1

27

(
22

√
22 − 13

√
13
)

.

8. y = 1
3x3/2 − x1/2, [2, 8]

solution Let y = 1
3x3/2 − x1/2. Then

y′ = 1

2
x1/2 − 1

2
x−1/2,

and

1 + (y′)2 = 1 +
(

1

2
x1/2 − 1

2
x−1/2

)2
= 1

4
x + 1

2
+ 1

4
x−1 =

(
1

2
x1/2 + 1

2
x−1/2

)2
.
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Hence,

s =
∫ 8

2

√
1 + (y′)2 dx =

∫ 8

2

√(
1

2
x1/2 + 1

2
x−1/2

)2
dx =

∫ 8

2

∣∣∣∣12x1/2 + 1

2
x−1/2

∣∣∣∣ dx

=
∫ 8

2

(
1

2
x1/2 + 1

2
x−1/2

)
dx since

1

2
x1/2 + 1

2
x−1/2 > 0

=
(

1

3
x3/2 + x1/2

) ∣∣∣∣8
2

= 17
√

2

3
.

9. y = 1
4x2 − 1

2 ln x, [1, 2e]
solution Let y = 1

4x2 − 1
2 ln x. Then

y′ = x

2
− 1

2x
,

and

1 + (y′)2 = 1 +
(

x

2
− 1

2x

)2
= x2

4
+ 1

2
+ 1

4x2
=
(

x

2
+ 1

2x

)2
.

Hence,

s =
∫ 2e

1

√
1 + (y′)2 dx =

∫ 2e

1

√(
x

2
+ 1

2x

)2
dx =

∫ 2e

1

∣∣∣∣x2 + 1

2x

∣∣∣∣ dx

=
∫ 2e

1

(
x

2
+ 1

2x

)
dx since

x

2
+ 1

2x
> 0 on [1, 2e]

=
(

x2

4
+ 1

2
ln x

) ∣∣∣∣2e

1
= e2 + ln 2

2
+ 1

4
.

10. y = ln(cos x),
[
0, π

4

]
solution Let y = ln(cos x). Then y′ = − tan x and 1 + (y′)2 = 1 + tan2 x = sec2 x. Hence,

s =
∫ π/4

0

√
1 + (y′)2 dx =

∫ π/4

0

√
sec2 x dx =

∫ π/4

0
| sec x| dx

=
∫ π/4

0
sec x dx since sec x > 0 on

[
0,

π

4

]

= ln |sec x + tan x|
∣∣∣∣π/4

0
= ln(

√
2 + 1).

In Exercises 11–14, approximate the arc length of the curve over the interval using the Trapezoidal Rule TN , the Midpoint
Rule MN , or Simpson’s Rule SN as indicated.

11. y = 1
4x4, [1, 2], T5

solution Let y = 1
4x4. Then

1 + (y′)2 = 1 + (x3)2 = 1 + x6.

Therefore, the arc length over [1, 2] is

∫ 2

1

√
1 + x6 dx.

Now, let f (x) =
√

1 + x6. With n = 5,

�x = 2 − 1

5
= 1

5
and {xi}5

i=0 =
{

1,
6

5
,

7

5
,

8

5
,

9

5
, 2

}
.
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Using the Trapezoidal Rule,

∫ 2

1

√
1 + x6 dx ≈ �x

2

⎡
⎣f (x0) + 2

4∑
i=1

f (xi) + f (x5)

⎤
⎦ = 3.957736.

The arc length is approximately 3.957736 units.

12. y = sin x,
[
0, π

2

]
, M8

solution Let y = sin x. Then

1 + y′2 = 1 + cos2 x.

Therefore, the arc length over [0, π/2] is ∫ π/2

0

√
1 + cos2 x dx.

Now, let f (x) =
√

1 + cos2 x. With n = 8, we have:

�x = π/2

8
= π

16
and

{
x∗
i

}8
i=1 =

{
π

32
,

3π

32
,

5π

32
,

7π

32
,

9π

32
,

11π

32
,

13π

32
,

15π

32

}
.

Using the Midpoint Rule,

∫ π/2

0

√
1 + cos2 x dx ≈ �x

8∑
i=1

f (x∗
i ) = 1.910099.

The arc length is approximately 1.910099 units.

13. y = x−1, [1, 2], S8

solution Let y = x−1. Then y′ = −x−2 and

1 + (y′)2 = 1 + 1

x4
.

Therefore, the arc length over [1, 2] is

∫ 2

1

√
1 + 1

x4
dx.

Now, let f (x) =
√

1 + 1
x4 . With n = 8,

�x = 2 − 1

8
= 1

8
and {xi}8

i=0 =
{

1,
9

8
,

5

4
,

11

8
,

3

2
,

13

8
,

7

4
,

15

8
, 2

}
.

Using Simpson’s Rule,

∫ 2

1

√
1 + 1

x4
dx ≈ �x

3

⎡
⎣f (x0) + 4

4∑
i=1

f (x2i−1) + 2
3∑

i=1

f (x2i ) + f (x8)

⎤
⎦ = 1.132123.

The arc length is approximately 1.132123 units.

14. y = e−x2
, [0, 2], S8

solution Let y = e−x2
. Then

1 + (y′)2 = 1 + 4x2e−2x2
.

Therefore, the arc length over [0, 2] is ∫ 2

0

√
1 + 4x2e−2x2

dx.

Now, let f (x) =
√

1 + 4x2e−2x2 . With n = 8,

�x = 2 − 0

8
= 1

4
and {xi}8

i=0 =
{

0,
1

4
,

1

2
,

3

4
, 1,

5

4
,

3

2
,

7

4
, 2

}
.
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Using Simpson’s Rule,

∫ 2

0

√
1 + 4x2e−2x2

dx ≈ �x

3

⎡
⎣f (x0) + 4

4∑
i=1

f (x2i−1) + 2
3∑

i=1

f (x2i ) + f (x8)

⎤
⎦ = 2.280718.

The arc length is approximately 2.280718 units.

15. Calculate the length of the astroid x2/3 + y2/3 = 1 (Figure 11).

y

1

1

−1

−1
x

FIGURE 11 Graph of x2/3 + y2/3 = 1.

solution We will calculate the arc length of the portion of the asteroid in the first quadrant and then multiply by 4. By
implicit differentiation

2

3
x−1/3 + 2

3
y−1/3y′ = 0,

so

y′ = −x−1/3

y−1/3
= −y1/3

x1/3
.

Thus

1 + (y′)2 = 1 + y2/3

x2/3
= x2/3 + y2/3

x2/3
= 1

x2/3
,

and

s =
∫ 1

0

1

x1/3
dx = 3

2
.

The total arc length is therefore 4 · 3
2 = 6.

16. Show that the arc length of the asteroid x2/3 + y2/3 = a2/3 (for a > 0) is proportional to a.

solution We will calculate the arc length of the portion of the asteroid in the first quadrant and then multiply by 4. By
implicit differentiation

2

3
x−1/3 + 2

3
y−1/3y′ = 0,

so

y′ = −x−1/3

y−1/3
= −y1/3

x1/3
.

Thus

1 + (y′)2 = 1 + y2/3

x2/3
= x2/3 + y2/3

x2/3
= a2/3

x2/3
,

and

s =
∫ a

0

a1/3

x1/3
dx = a1/3

(
3

2
a2/3

)
= 3

2
a.

The total arc length is therefore 4 · 3
2a = 6a, which is proportional to a.

17. Let a, r > 0. Show that the arc length of the curve xr + yr = ar for 0 ≤ x ≤ a is proportional to a.

solution Using implicit differentiation, we find y′ = −(x/y)r−1 and

1 + (y′)2 = 1 + (x/y)2r−2 = x2r−1 + y2r−2

y2r−2
= x2r−2 + (ar − xr )2−2/r

(ar − xr )2−2/r
.
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The arc length is then

s =
∫ a

0

√
x2r−2 + (ar − xr )2−2/r

(ar − xr )2−2/r
dx.

Using the substitution x = au, we obtain

s = a

∫ 1

0

√
u2r−2 + (1 − ur )2−2/r

(1 − ur )2−2/r
du,

where the integral is independent of a.

18. Find the arc length of the curve shown in Figure 12.

x

0.5

y

321

FIGURE 12 Graph of 9y2 = x(x − 3)2.

solution Using implicit differentiation,

18yy′ = x(2)(x − 3) + (x − 3)2 = 3(x − 3)(x − 1)

Hence,

(y′)2 = (x − 3)2(x − 1)2

36y2
= (x − 3)2(x − 1)2

4(9y2)
= (x − 3)2(x − 1)2

4x(x − 3)2
= (x − 1)2

4x

and

1 + (y′)2 = (x − 1)2 + 4x

4x
= (x + 1)2

4x
.

Finally,

s =
∫ 3

0

√
(x + 1)2

4x
dx =

∫ 3

0

|x + 1|
2
√

x
dx

=
∫ 3

0

x + 1

2
√

x
dx since x + 1 > 0 on [0, 3]

=
∫ 3

0

(
1

2
x1/2 + 1

2
x−1/2

)
dx =

(
1

3
x3/2 + x1/2

) ∣∣∣∣3
0

= 2
√

3.

19. Find the value of a such that the arc length of the catenary y = cosh x for −a ≤ x ≤ a equals 10.

solution Let y = cosh x. Then y′ = sinh x and

1 + (y′)2 = 1 + sinh2 x = cosh2 x.

Thus,

s =
∫ a

−a
cosh x dx = sinh(a) − sinh(−a) = 2 sinh a.

Setting this expression equal to 10 and solving for a yields a = sinh−1(5) = ln(5 + √
26).

20. Calculate the arc length of the graph of f (x) = mx + r over [a, b] in two ways: using the Pythagorean theorem
(Figure 13) and using the arc length integral.

x
a b

r

y

b − a

m(b − a)

FIGURE 13
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solution Let h denote the length of the hypotenuse. Then, by Pythagoras’ Theorem,

h2 = (b − a)2 + m2(b − a)2 = (b − a)2(1 + m2),

or

h = (b − a)
√

1 + m2

since b > a. Moreover, (f ′(x))2 = m2, so

s =
∫ b

a

√
1 + m2 dx = (b − a)

√
1 + m2 = h.

21. Show that the circumference of the unit circle is equal to

2
∫ 1

−1

dx√
1 − x2

(an improper integral)

Evaluate, thus verifying that the circumference is 2π .

solution Note the circumference of the unit circle is twice the arc length of the upper half of the curve defined by

x2 + y2 = 1. Thus, let y =
√

1 − x2. Then

y′ = − x√
1 − x2

and 1 + (y′)2 = 1 + x2

1 − x2
= 1

1 − x2
.

Finally, the circumference of the unit circle is

2
∫ 1

−1

dx√
1 − x2

= 2 sin−1 x

∣∣∣∣1−1
= π − (−π) = 2π.

22. Generalize the result of Exercise 21 to show that the circumference of the circle of radius r is 2πr .

solution Let y =
√

r2 − x2 denote the upper half of a circle of radius r centered at the origin. Then

1 + (y′)2 = 1 + x2

r2 − x2
= r2

r2 − x2
= 1

1 − x2

r2

,

and the circumference of the circle is given by

C = 2
∫ r

−r

dx√
1 − x2/r2

.

Using the substitution u = x/r , du = dx/r , we find

C = 2r

∫ 1

−1

du√
1 − u2

= 2r sin−1 u

∣∣∣∣1−1

= 2r
(π

2
−
(
−π

2

))
= 2πr

23. Calculate the arc length of y = x2 over [0, a]. Hint: Use trigonometric substitution. Evaluate for a = 1.

solution Let y = x2. Then y′ = 2x and

s =
∫ a

0

√
1 + 4x2 dx.

Using the substitution 2x = tan θ , 2 dx = sec2 θ dθ , we find

s = 1

2

∫ x=a

x=0
sec3 θ dθ.

Next, using a reduction formula for the integral of sec3 θ , we see that

s =
(

1

4
sec θ tan θ + 1

4
ln | sec θ + tan θ |

)∣∣∣∣x=a

x=0
=
(

1

2
x
√

1 + 4x2 + 1

4
ln |

√
1 + 4x2 + 2x|

) ∣∣∣∣a
0

= a

2

√
1 + 4a2 + 1

4
ln |

√
1 + 4a2 + 2a|
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Thus, when a = 1,

s = 1

2

√
5 + 1

4
ln(

√
5 + 2) ≈ 1.478943.

24. Express the arc length of g(x) = √
x over [0, 1] as a definite integral. Then use the substitution u = √

x to

show that this arc length is equal to the arc length of x2 over [0, 1] (but do not evaluate the integrals). Explain this result
graphically.

solution Let g(x) = √
x. Then

1 + g′(x)2 = 1 + 4x

4x
and s =

∫ 1

0

√
1 + 4x

4x
dx =

∫ 1

0

√
1 + 4x

2
√

x
dx.

With the substitution u = √
x, du = 1

2
√

x
dx, this becomes

s =
∫ 1

0

√
1 + 4u2 du.

Now, let f (x) = x2. Then 1 + f ′(x)2 = 1 + 4x2, and

s =
∫ 1

0

√
1 + 4x2 dx.

Thus, the two arc lengths are equal. This is explained graphically by the fact that for x ≥ 0, x2 and
√

x are inverses of
each other. This means that the two graphs are symmetric with respect to the line y = x. Moreover, the graphs of x2 and√

x intersect at x = 0 and at x = 1. Thus, it is clear that the arc length of the two graphs on [0, 1] are equal.

25. Find the arc length of y = ex over [0, a]. Hint: Try the substitution u =
√

1 + e2x followed by partial fractions.

solution Let y = ex . Then 1 + (y′)2 = 1 + e2x , and the arc length over [0, a] is

∫ a

0

√
1 + e2x dx.

Now, let u =
√

1 + e2x . Then

du = 1

2
· 2e2x√

1 + e2x
dx = u2 − 1

u
dx

and the arc length is

∫ a

0

√
1 + e2x dx =

∫ x=a

x=0
u · u

u2 − 1
du =

∫ x=a

x=0

u2

u2 − 1
du =

∫ x=a

x=0

(
1 + 1

u2 − 1

)
du

=
∫ x=a

x=0

(
1 + 1

2

1

u − 1
− 1

2

1

u + 1

)
du =

(
u + 1

2
ln(u − 1) − 1

2
ln(u + 1)

) ∣∣∣∣x=a

x=0

=
[√

1 + e2x + 1

2
ln

(√
1 + e2x − 1√
1 + e2x + 1

)] ∣∣∣∣a
0

=
√

1 + e2a + 1

2
ln

√
1 + e2a − 1√
1 + e2a + 1

− √
2 + 1

2
ln

1 + √
2√

2 − 1

=
√

1 + e2a + 1

2
ln

√
1 + e2a − 1√
1 + e2a + 1

− √
2 + ln(1 + √

2).

26. Show that the arc length of y = ln(f (x)) for a ≤ x ≤ b is

∫ b

a

√
f (x)2 + f ′(x)2

f (x)
dx 4

solution Let y = ln(f (x)). Then

y′ = f ′(x)

f (x)
and 1 + (y′)2 = f (x)2 + f ′(x)2

f (x)2
.
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Therefore,

s =
∫ b

a

√
f (x)2 + f ′(x)2

f (x)
dx

since f (x) > 0 in order for y = ln(f (x)) to be defined on [a, b].
27. Use Eq. (4) to compute the arc length of y = ln(sin x) for π

4 ≤ x ≤ π
2 .

solution With f (x) = sin x, Eq. (4) yields

s =
∫ π/2

π/4

√
sin2 x + cos2 x

sin x
dx =

∫ π/2

π/4
csc x dx = ln (csc x − cot x)

∣∣∣∣π/2

π/4

= ln 1 − ln(
√

2 − 1) = ln
1√

2 − 1
= ln(

√
2 + 1).

28. Use Eq. (4) to compute the arc length of y = ln

(
ex + 1

ex − 1

)
over [1, 3].

solution With f (x) = ex + 1

ex − 1
,

f ′(x) = (ex − 1)ex − (ex + 1)ex

(ex − 1)2
= − 2ex

(ex − 1)2

and

f (x)2 + f ′(x)2 =
(

ex + 1

ex − 1

)2
+ 4e2x

(ex − 1)4
= (e2x − 1)2 + 4e2x

(ex − 1)4
= (e2x + 1)2

(ex − 1)4
.

Thus, by Eq. (4),

s =
∫ 3

1

e2x + 1

(ex − 1)2
· ex − 1

ex + 1
dx =

∫ 3

1

e2x + 1

e2x − 1
dx.

Observe that

e2x + 1

e2x − 1
= ex + e−x

ex − e−x
= (ex + e−x)/2

(ex − e−x)/2
= cosh x

sinh x
.

Therefore,

s =
∫ 3

1

cosh x

sinh x
dx = ln(sinh x)

∣∣∣∣3
1

= ln(sinh 3) − ln(sinh 1).

29. Show that if 0 ≤ f ′(x) ≤ 1 for all x, then the arc length of y = f (x) over [a, b] is at most
√

2(b − a). Show that
for f (x) = x, the arc length equals

√
2(b − a).

solution If 0 ≤ f ′(x) ≤ 1 for all x, then

s =
∫ b

a

√
1 + f ′(x)2 dx ≤

∫ b

a

√
1 + 1 dx = √

2(b − a).

If f (x) = x, then f ′(x) = 1 and

s =
∫ b

a

√
1 + 1 dx = √

2(b − a).

30. Use the Comparison Theorem (Section 5.2) to prove that the arc length of y = x4/3 over [1, 2] is not less than 5
3 .

solution Note that f ′(x) = 4
3x1/3; for x ∈ [1, 2], we have x1/3 ≥ 1 so that f ′(x) ≥ 4

3 . Then

√
1 + f ′(x)2 ≥

√
1 +

(
4

3

)2
=
√

25

9
= 5

3

and then the arc length is ∫ 2

1

√
1 + f ′(x)2 dx ≥

∫ 2

1

5

3
dx = 5

3
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31. Approximate the arc length of one-quarter of the unit circle (which we know is π
2 ) by computing the length of the

polygonal approximation with N = 4 segments (Figure 14).

y

10.750.50.25
x

FIGURE 14 One-quarter of the unit circle

solution With y =
√

1 − x2, the five points along the curve are

P0(0, 1), P1(1/4,
√

15/4), P2(1/2,
√

3/2), P3(3/4,
√

7/4), P4(1, 0)

Then

P0P1 =
√√√√ 1

16
+
(

4 − √
15

4

)2

≈ 0.252009

P1P2 =
√√√√ 1

16
+
(

2
√

3 − √
15

4

)2

≈ 0.270091

P2P3 =
√√√√ 1

16
+
(

2
√

3 − √
7

4

)2

≈ 0.323042

P3P4 =
√

1

16
+ 7

16
≈ 0.707108

and the total approximate distance is 1.552250 whereas π/2 ≈ 1.570796.

32. A merchant intends to produce specialty carpets in the shape of the region in Figure 15, bounded by the

axes and graph of y = 1 − xn (units in yards). Assume that material costs $50/yd2 and that it costs 50L dollars to cut
the carpet, where L is the length of the curved side of the carpet. The carpet can be sold for 150A dollars, where A is
the carpet’s area. Using numerical integration with a computer algebra system, find the whole number n for which the
merchant’s profits are maximal.

1

0.5

y

y = 1 − xn

10.5
x

A

FIGURE 15

solution The area of the carpet is

A =
∫ 1

0
(1 − xn)dx =

(
x − xn+1

n + 1

) ∣∣∣∣1
0

= 1 − 1

n + 1
= n

n + 1
,

while the length of the curved side of the carpet is

L =
∫ 1

0

√
1 + (nxn−1)2 dx =

∫ 1

0

√
1 + n2x2n−2 dx.

Using these formulas, we find that the merchant’s profit is given by

150A − (50A + 50L) = 100A − 50L = 100n

n + 1
− 50

∫ 1

0

√
1 + n2x2n−2 dx.

Using a CAS, we find that the merchant’s profit is maximized (approximately $3.31 per carpet) when n = 13. The table
below lists the profit for 1 ≤ n ≤ 15.
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n Profit n Profit

1 −20.71067810 9 3.06855532
2 −7.28047621 10 3.18862208
3 −2.39328273 11 3.25953632
4 −0.01147138 12 3.29668137
5 1.30534545 13 3.31024566
6 2.08684099 14 3.30715476
7 2.57017349 15 3.29222024
8 2.87535925

In Exercises 33–40, compute the surface area of revolution about the x-axis over the interval.

33. y = x, [0, 4]
solution 1 + (y′)2 = 2 so that

SA = 2π

∫ 4

0
x
√

2 dx = 2π
√

2
1

2
x2
∣∣∣∣4
0

= 16π
√

2

34. y = 4x + 3, [0, 1]
solution Let y = 4x + 3. Then 1 + (y′)2 = 17 and

SA = 2π

∫ 1

0
(4x + 3)

√
17 dx = 2π

√
17
(

2x2 + 3x
) ∣∣∣∣1

0
= 10π

√
17.

35. y = x3, [0, 2]
solution 1 + (y′)2 = 1 + 9x4, so that

SA = 2π

∫ 2

0
x3
√

1 + 9x4 dx = 2π

36

∫ 2

0
36x3

√
1 + 9x4 dx = π

18
(1 + 9x4)3/2

∣∣∣∣2
0

= π

18

(
1453/2 − 1

)

36. y = x2, [0, 4]
solution Let y = x2. Then y′ = 2x and

SA = 2π

∫ 4

0
x2
√

1 + 4x2 dx.

Using the substitution 2x = tan θ , 2 dx = sec2 θ dθ , we find that∫
x2
√

1 + 4x2 dx = 1

8

∫
sec3 θ tan2 θ dθ = 1

8

∫ (
sec5 θ − sec3 θ

)
dθ

= 1

8

(
1

4
sec3 θ tan θ + 3

8
sec θ tan θ + 3

8
ln |sec θ + tan θ | − 1

2
sec θ tan θ − 1

2
ln |sec θ + tan θ |

)
+ C

= x

16
(1 + 4x2)3/2 − x

32

√
1 + 4x2 − 1

64
ln |

√
1 + 4x2 + 2x| + C.

Finally,

SA = 2π

(
x

16
(1 + 4x2)3/2 − x

32

√
1 + 4x2 − 1

64
ln |

√
1 + 4x2 + 2x|

) ∣∣∣∣4
0

= 2π

(
1

4
653/2 −

√
65

8
− 1

64
ln(8 + √

65)

)
= 129

√
65

4
π − π

32
ln(8 + √

65).

37. y = (4 − x2/3)3/2, [0, 8]
solution Let y = (4 − x2/3)3/2. Then

y′ = −x−1/3(4 − x2/3)1/2,

and

1 + (y′)2 = 1 + 4 − x2/3

x2/3
= 4

x2/3
.



March 30, 2011

S E C T I O N 8.1 Arc Length and Surface Area 1027

Therefore,

SA = 2π

∫ 8

0
(4 − x2/3)3/2

(
2

x1/3

)
dx.

Using the substitution u = 4 − x2/3, du = − 2
3x−1/3 dx, we find

SA = 2π

∫ 0

4
u3/2(−3) du = 6π

∫ 4

0
u3/2 du = 12

5
πu5/2

∣∣∣∣4
0

= 384π

5
.

38. y = e−x , [0, 1]
solution Let y = e−x . Then y′ = −e−x and

SA = 2π

∫ 1

0
e−x

√
1 + e−2x dx.

Using the substitution e−x = tan θ , −e−x dx = sec2 θ dθ , we find that∫
e−x

√
1 + e−2x dx = −

∫
sec3 θ dθ = −1

2
sec θ tan θ − 1

2
ln | sec θ + tan θ | + C

= −1

2
e−x

√
1 + e−2x − 1

2
ln |

√
1 + e−2x + e−x | + C.

Finally,

SA =
(
−πe−x

√
1 + e−2x − π ln |

√
1 + e−2x + e−x |

) ∣∣∣∣1
0

= −πe−1
√

1 + e−2 − π ln(
√

1 + e−2 + e−1) + π
√

2 + π ln(
√

2 + 1)

= π
√

2 − πe−1
√

1 + e−2 + π ln

( √
2 + 1√

1 + e−2 + e−1

)
.

39. y = 1
4x2 − 1

2 ln x, [1, e]
solution We have y′ = x

2 − 1
2x

, and

1 + (y′)2 = 1 +
(

x

2
− 1

2x

)2
= 1 + x2

4
− 1

2
+ 1

4x2
= x2

4
+ 1

2
+ 1

4x2
=
(

x

2
+ 1

2x

)2
.

Thus,

SA = 2π

∫ e

1

(
x2

4
− ln x

2

)(
x

2
+ 1

2x

)
dx = 2π

∫ e

1

x3

8
+ x

8
− x ln x

4
− ln x

4x
dx

= 2π

(
x4

32
+ x2

16
− x2 ln x

8
+ x2

16
− (ln x)2

8

) ∣∣∣∣e
1

= 2π

(
e4

32
+ e2

16
− e2

8
+ e2

16
− 1

8
−
(

1

32
+ 1

16
+ 0 + 1

16
− 0

))

= 2π

(
e4

32
− 1

8
− 1

32
− 1

16
− 1

16

)

= π

16
(e4 − 9)

40. y = sin x, [0, π]
solution Let y = sin x. Then y′ = cos x, and

SA = 2π

∫ π

0
sin x

√
1 + cos2 x dx.

Using the substitution cos x = tan θ , − sin x dx = sec2 θ dθ , we find that∫
sin x

√
1 + cos2 x dx = −

∫
sec3 θ dθ = −1

2
sec θ tan θ − 1

2
ln | sec θ + tan θ | + C
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= −1

2
cos x

√
1 + cos2 x − 1

2
ln |

√
1 + cos2 x + cos x| + C.

Finally,

SA = 2π

(
−1

2
cos x

√
1 + cos2 x − 1

2
ln |

√
1 + cos2 x + cos x|

) ∣∣∣∣π
0

= 2π

(
1

2

√
2 − 1

2
ln(

√
2 − 1) + 1

2

√
2 + 1

2
ln(

√
2 + 1)

)
= 2π

(√
2 + ln(

√
2 + 1)

)
.

In Exercises 41–44, use a computer algebra system to find the approximate surface area of the solid generated
by rotating the curve about the x-axis.

41. y = x−1, [1, 3]
solution

SA = 2π

∫ 3

1

1

x

√
1 +

(
− 1

x2

)2
dx = 2π

∫ 3

1

1

x

√
1 + 1

x4
dx ≈ 7.603062807

using Maple.

42. y = x4, [0, 1]
solution

SA = 2π

∫ 1

0
x4
√

1 + (4x3)2 dx = 2π

∫ 1

0
x4
√

1 + 16x6 dx ≈ 3.436526697

using Maple.

43. y = e−x2/2, [0, 2]
solution

SA = 2π

∫ 2

0
e−x2/2

√
1 + (−xe−x2/2)2 dx = 2π

∫ 2

0
e−x2/2

√
1 + x2e−x2

dx ≈ 8.222695606

using Maple.

44. y = tan x,
[
0, π

4

]
solution Let y = tan x. Then y′ = sec2 x, 1 + (y′)2 = 1 + sec4 x, and

SA = 2π

∫ π/4

0
tan x

√
1 + sec4 x dx.

Using a computer algebra system to approximate the value of the definite integral, we find

SA ≈ 3.83908.

45. Find the area of the surface obtained by rotating y = cosh x over [− ln 2, ln 2] around the x-axis.

solution Let y = cosh x. Then y′ = sinh x, and

√
1 + (y′)2 =

√
1 + sinh2 x =

√
cosh2 x = cosh x.

Therefore,

SA = 2π

∫ ln 2

− ln 2
cosh2 x dx = π

∫ ln 2

− ln 2
(1 + cosh 2x) dx = π

(
x + 1

2
sinh 2x

) ∣∣∣∣ln 2

− ln 2

= π

(
ln 2 + 1

2
sinh(2 ln 2) + ln 2 − 1

2
sinh(−2 ln 2)

)
= 2π ln 2 + π sinh(2 ln 2).

We can simplify this answer by recognizing that

sinh(2 ln 2) = e2 ln 2 − e−2 ln 2

2
= 4 − 1

4
2

= 15

8
.

Thus,

SA = 2π ln 2 + 15π

8
.
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46. Show that the surface area of a spherical cap of height h and radius R (Figure 16) has surface area 2πRh.

h

R

FIGURE 16

solution To determine the surface area of the cap, we will rotate a portion of a circle of radius R, centered at the

origin, about the y-axis. Since the equation of the right half of the circle is x =
√

R2 − y2,

1 + (x′)2 = 1 + y2

R2 − y2
= R2

R2 − y2
,

and

SA = 2π

∫ R

R−h

√
R2 − y2

(
R√

R2 − y2

)
dy = 2πR (R − (R − h)) = 2πRh.

47. Find the surface area of the torus obtained by rotating the circle x2 + (y − b)2 = a2 about the x-axis (Figure 17).

y

x

(0, b + a)

(0, b)

FIGURE 17 Torus obtained by rotating a circle about the x-axis.

solution y = b +
√

a2 − x2 gives the top half of the circle and y = b −
√

a2 − x2 gives the bottom half. Note that
in each case,

1 + (y′)2 = 1 + x2

a2 − x2
= a2

a2 − x2
.

Rotating the two halves of the circle around the x-axis then yields

SA = 2π

∫ a

−a
(b +

√
a2 − x2)

a√
a2 − x2

dx + 2π

∫ a

−a
(b −

√
a2 − x2)

a√
a2 − x2

dx

= 2π

∫ a

−a
2b

a√
a2 − x2

dx = 4πba

∫ a

−a

1√
a2 − x2

dx

= 4πba · sin−1
(x

a

) ∣∣∣∣a−a

= 4πba
(π

2
−
(
−π

2

))
= 4π2ba.

48. Show that the surface area of a right circular cone of radius r and height h is πr
√

r2 + h2. Hint: Rotate a line y = mx

about the x-axis for 0 ≤ x ≤ h, where m is determined suitably by the radius r .

solution

y

y = mx

x
h

r
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From the figure, we see that m = r

h
, so y = rx

h
. Thus

SA = 2π

∫ h

0

rx

h

√
1 + r2

h2
dx = 2πr

h

√
1 + r2

h2

∫ h

0
x dx = πr

√
h2 + r2.

Further Insights and Challenges
49. Find the surface area of the ellipsoid obtained by rotating the ellipse

(x

a

)2 +
(y

b

)2 = 1 about the x-axis.

solution Taking advantage of symmetry, we can find the surface area of the ellipsoid by doubling the surface area
obtained by rotating the portion of the ellipse in the first quadrant about the x-axis. The equation for the portion of the
ellipse in the first quadrant is

y = b

a

√
a2 − x2.

Thus,

1 + (y′)2 = 1 + b2x2

a2(a2 − x2)
= a4 + (b2 − a2)x2

a2(a2 − x2)
,

and

SA = 4π

∫ a

0

b

a

√
a2 − x2

√
a4 + (b2 − a2)x2

a
√

a2 − x2
dx = 4πb

∫ a

0

√
1 +

(
b2 − a2

a4

)
x2 dx.

We now consider two cases. If b2 > a2, then we make the substitution

√
b2 − a2

a2
x = tan θ, dx = a2√

b2 − a2
sec2 θ dθ,

and find that

SA = 4πb
a2√

b2 − a2

∫ x=a

x=0
sec3 θ dθ = 2πb

a2√
b2 − a2

(sec θ tan θ + ln | sec θ + tan θ |)
∣∣∣∣x=a

x=0

=
⎛
⎝2πbx

√
1 +

(
b2 − a2

a4

)
x2 + 2πb

a2√
b2 − a2

ln

∣∣∣∣∣∣
√

1 +
(

b2 − a2

a4

)
x2 +

√
b2 − a2

a2
x

∣∣∣∣∣∣
⎞
⎠ ∣∣∣∣a

0

= 2πb2 + 2πb
a2√

b2 − a2
ln

(
b

a
+
√

b2 − a2

a

)
.

On the other hand, if a2 > b2, then we make the substitution

√
a2 − b2

a2
x = sin θ, dx = a2√

a2 − b2
cos θ dθ,

and find that

SA = 4πb
a2√

a2 − b2

∫ x=a

x=0
cos2 θ dθ = 2πb

a2√
a2 − b2

(θ + sin θ cos θ)

∣∣∣∣x=a

x=0

=
⎡
⎣2πbx

√
1 −

(
a2 − b2

a4

)
x2 + 2πb

a2√
a2 − b2

sin−1

(√
a2 − b2

a2
x

)⎤⎦ ∣∣∣∣a
0

= 2πb2 + 2πb
a2√

a2 − b2
sin−1

(√
a2 − b2

a

)
.

Observe that in both cases, as a approaches b, the value of the surface area of the ellipsoid approaches 4πb2, the surface
area of a sphere of radius b.



March 30, 2011

S E C T I O N 8.1 Arc Length and Surface Area 1031

50. Show that if the arc length of f (x) over [0, a] is proportional to a, then f (x) must be a linear function.

solution

s =
∫ a

0

√
1 + f ′(x)2 dx

For s to be proportional to a,
√

1 + f ′(x)2 must be a constant, which implies f ′(x) is a constant. This, in turn, requires
f (x) be linear.

51. Let L be the arc length of the upper half of the ellipse with equation

y = b

a

√
a2 − x2

(Figure 18) and let η =
√

1 − (b2/a2). Use substitution to show that

L = a

∫ π/2

−π/2

√
1 − η2 sin2 θ dθ

Use a computer algebra system to approximate L for a = 2, b = 1.

x

y

2−2

1

FIGURE 18 Graph of the ellipse y = 1
2

√
4 − x2.

solution Let y = b

a

√
a2 − x2. Then

1 + (y′)2 = b2x2 + a2(a2 − x2)

a2(a2 − x2)

and

s =
∫ a

−a

√
b2x2 + a2(a2 − x2)

a2(a2 − x2)
dx.

With the substitution x = a sin t , dx = a cos t dt , a2 − x2 = a2 cos2 t and

s = a

∫ π/2

−π/2
cos t

√
a2b2 sin2 t + a2a2 cos2 t

a2(a2 cos2 t)
dt = a

∫ π/2

π/2

√
b2 sin2 t

a2
+ cos2 t dt

Because

η =
√

1 − b2

a2
, η2 = 1 − b2

a2

we then have

1 − η2 sin2 t = 1 −
(

1 − b2

a2

)
sin2 t = 1 − sin2 t + b2

a2
sin2 t = cos2 t + b2

a2
sin2 t

which is the same as the expression under the square root above. Substituting, we get

s = a

∫ π/2

−π/2

√
1 − η2 sin2 t dt

When a = 2 and b = 1, η2 = 3
4 . Using a computer algebra system to approximate the value of the definite integral, we

find s ≈ 4.84422.
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52. Prove that the portion of a sphere of radius R seen by an observer located at a distance d above the North Pole has area
A = 2πdR2/(d + R). Hint: According to Exercise 46, the cap has surface area is 2πRh. Show that h = dR/(d + R)

by applying the Pythagorean Theorem to the three right triangles in Figure 19.

R

d

h

Observer

FIGURE 19 Spherical cap observed from a distance d above the North Pole.

solution Label distances as shown in the figure below.

R

k

x

d

h

R − h

By repeated application of the Pythagorean Theorem, we find

(d + R)2 = R2 + k2 = R2 + (d + h)2 + x2 = R2 + (d + h)2 + R2 − (R − h)2.

Solving for h yields

d2 + 2dR + R2 = R2 + d2 + 2dh + h2 + R2 − R2 + 2Rh − h2

2dR = 2dh + 2Rh

dR = (d + R)h

h = dR

d + R

and thus

SA = 2πR

(
dR

d + R

)
.

53. Suppose that the observer in Exercise 52 moves off to infinity—that is, d → ∞. What do you expect the
limiting value of the observed area to be? Check your guess by calculating the limit using the formula for the area in the
previous exercise.

solution We would assume the observed surface area would approach 2πR2 which is the surface area of a hemisphere
of radius R. To verify this, observe:

lim
d→∞ SA = lim

d→∞
2πR2d

R + d
= lim

d→∞
2πR2

1
= 2πR2.

54. Let M be the total mass of a metal rod in the shape of the curve y = f (x) over [a, b] whose mass density
ρ(x) varies as a function of x. Use Riemann sums to justify the formula

M =
∫ b

a
ρ(x)

√
1 + f ′(x)2 dx

solution Divide the interval [a, b] into n subintervals, which we shall denote by [xj−1, xj ] for j = 1, 2, 3, . . . , n.
On each subinterval, we will assume that the mass density of the rod is constant; hence, the mass of the corresponding
segment of the rod will be approximately equal to the product of the mass density of the segment and the length of the
segment. Specifically, let cj be any point in the j th subinterval and approximate the mass of the segment by

ρ(cj )

√
1 + f ′(cj )2 �x,

where
√

1 + f ′(cj )2 �x is the approximate length of the segment. Thus,

M ≈
n∑

j=1

ρ(cj )

√
1 + f ′(cj )2 �x.
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As n → ∞, this Riemann sum approaches a definite integral, and we have

M =
∫ b

a
ρ(x)

√
1 + f ′(x)2 dx.

55. Let f (x) be an increasing function on [a, b] and let g(x) be its inverse. Argue on the basis of arc length that
the following equality holds:

∫ b

a

√
1 + f ′(x)2 dx =

∫ f (b)

f (a)

√
1 + g′(y)2 dy 5

Then use the substitution u = f (x) to prove Eq. (5).

solution Since the graphs of f (x) and g(x) are symmetric with respect to the line y = x, the arc length of the curves
will be equal on the respective domains. Since the domain of g is the range of f , on f (a) to f (b), g(x) will have the
same arc length as f (x) on a to b. If g(x) = f −1(x) and u = f (x), then x = g(u) and du = f ′(x) dx. But

g′(u) = 1

f ′(g(u))
= 1

f ′(x)
⇒ f ′(x) = 1

g′(u)

Now substituting u = f (x),

s =
∫ b

a

√
1 + f ′(x)2 dx =

∫ f (b)

f (a)

√
1 +

(
1

g′(u)

)2
g′(u) du =

∫ f (b)

f (a)

√
g′(u)2 + 1 du

8.2 Fluid Pressure and Force

Preliminary Questions
1. How is pressure defined?

solution Pressure is defined as force per unit area.

2. Fluid pressure is proportional to depth. What is the factor of proportionality?

solution The factor of proportionality is the weight density of the fluid, w = ρg, where ρ is the mass density of the
fluid.

3. When fluid force acts on the side of a submerged object, in which direction does it act?

solution Fluid force acts in the direction perpendicular to the side of the submerged object.

4. Why is fluid pressure on a surface calculated using thin horizontal strips rather than thin vertical strips?

solution Pressure depends only on depth and does not change horizontally at a given depth.

5. If a thin plate is submerged horizontally, then the fluid force on one side of the plate is equal to pressure times area.
Is this true if the plate is submerged vertically?

solution When a plate is submerged vertically, the pressure is not constant along the plate, so the fluid force is not
equal to the pressure times the area.

Exercises
1. A box of height 6 m and square base of side 3 m is submerged in a pool of water. The top of the box is 2 m below the

surface of the water.

(a) Calculate the fluid force on the top and bottom of the box.

(b) Write a Riemann sum that approximates the fluid force on a side of the box by dividing the side into N horizontal
strips of thickness �y = 6/N .

(c) To which integral does the Riemann sum converge?

(d) Compute the fluid force on a side of the box.
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solution

(a) At a depth of 2 m, the pressure on the top of the box is ρgh = 103 · 9.8 · 2 = 19,600 Pa. The top has area 9 m2, and
the pressure is constant, so the force on the top of the box is 19,600 · 9 = 176,400N . At a depth of 8 m, the pressure on the
bottom of the box is ρgh = 103 · 9.8 · 8 = 78,400 Pa, so the force on the bottom of the box is 78,400 · 9 = 705,600N .

(b) Let yj denote the depth of the j th strip, for j = 1, 2, 3, . . . , N ; the pressure at this depth is 103 · 9.8 · yj = 9800yj Pa.

The strip has thickness �y m and length 3 m, so has area 3�y m2. Thus the force on the strip is 29,400yj�y N. Sum
over all the strips to conclude that the force on one side of the box is approximately

F ≈
N∑

j=1

29,400yj�y.

(c) As N → ∞, the Riemann sum in part (b) converges to the definite integral 29,400
∫ 8

2 y dy.

(d) Using the result from part (c), the fluid force on one side of the box is

29,400
∫ 8

2
y dy = 14,700y2

∣∣∣∣8
2

= 882,000 N

2. A plate in the shape of an isosceles triangle with base 1 m and height 2 m is submerged vertically in a tank of water
so that its vertex touches the surface of the water (Figure 7).

(a) Show that the width of the triangle at depth y is f (y) = 1
2y.

(b) Consider a thin strip of thickness �y at depth y. Explain why the fluid force on a side of this strip is approximately
equal to ρg 1

2y2�y.

(c) Write an approximation for the total fluid force F on a side of the plate as a Riemann sum and indicate the integral
to which it converges.

(d) Calculate F .

1

2

f (y)

y

Δy

FIGURE 7

solution

(a) By similar triangles,
y

2
= f (y)

1
so f (y) = y

2
.

(b) The pressure at a depth of y feet is ρgy Pa, and the area of the strip is approximately f (y) �y = 1
2y�y m2. Therefore,

the fluid force on this strip is approximately

ρgy

(
1

2
y�y

)
= 1

2
ρgy2�y.

(c) F ≈
N∑

j=1

ρg
y2
j

2
�y. As N → ∞, the Riemann sum converges to the definite integral

ρg

2

∫ 2

0
y2 dy.

(d) Using the result of part (c),

F = ρg

2

∫ 2

0
y2 dy = ρg

2

(
y3

3

)∣∣∣∣∣
2

0

= 9800

2
· 8

3
= 39200

3
N.

3. Repeat Exercise 2, but assume that the top of the triangle is located 3 m below the surface of the water.

solution

(a) Examine the figure below. By similar triangles,
y − 3

2
= f (y)

1
so f (y) = y − 3

2
.



March 30, 2011

S E C T I O N 8.2 Fluid Pressure and Force 1035

f (y)

y

3

(b) The pressure at a depth of y feet is ρgy lb/ Pa, and the area of the strip is approximately f (y) �y = 1
2 (y − 3)�y m2.

Therefore, the fluid force on this strip is approximately

ρgy

(
1

2
(y − 3)�y

)
= 1

2
ρgy(y − 3)�y N.

(c) F ≈
N∑

j=1

ρg
y2
j

− 3yj

2
�y. As N → ∞, the Riemann sum converges to the definite integral

ρg

2

∫ 5

3
(y2 − 3y) dy.

(d) Using the result of part (c),

F = ρg

2

∫ 5

3
(y2 − 3y) dy = ρg

2

(
y3

3
− 3y2

2

)∣∣∣∣∣
5

3

= 9800

2

[(
125

3
− 75

2

)
−
(

9 − 27

2

)]
= 127,400

3
N.

4. The plate R in Figure 8, bounded by the parabola y = x2 and y = 1, is submerged vertically in water (distance in
meters).

(a) Show that the width of R at height y is f (y) = 2
√

y and the fluid force on a side of a horizontal strip of thickness
�y at height y is approximately (ρg)2y1/2(1 − y)�y.

(b) Write a Riemann sum that approximates the fluid force F on a side of R and use it to explain why

F = ρg

∫ 1

0
2y1/2(1 − y) dy

(c) Calculate F .

Water surface

f (y)1 − y

x

R

1

(     , y)

−1

y

1

y

y

y = x2

FIGURE 8

solution

(a) At height y, the thin plate R extends from the point (−√
y, y) on the left to the point (

√
y, y) on the right; thus, the

width of the plate is f (y) = √
y − (−√

y) = 2
√

y. Moreover, the area of a horizontal strip of thickness �y at height y is
f (y) �y = 2

√
y �y. Because the water surface is at height y = 1, the horizontal strip at height y is at a depth of 1 − y.

Consequently, the fluid force on the strip is approximately

ρg(1 − y) × 2
√

y�y = 2ρgy1/2(1 − y)�y.

(b) If the plate is divided into N strips with yj being the representative height of the j th strip (for j = 1, 2, 3, . . . , N),
then the total fluid force exerted on the plate is

F ≈ 2ρg

N∑
j=1

(1 − yj )
√

yj�y.
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As N → ∞, the Riemann sum converges to the definite integral

2ρg

∫ 1

0
(1 − y)

√
y dy.

(c) Using the result from part (b),

F = 2ρg

∫ 1

0
(1 − y)

√
y dy = 2ρg

(
2

3
y3/2 − 2

5
y5/2

) ∣∣∣∣1
0

= 8

15
ρg.

Now, ρg = 9800 N/m3 so that F = 15680
3 N.

5. Let F be the fluid force on a side of a semicircular plate of radius r meters, submerged vertically in water so that its
diameter is level with the water’s surface (Figure 9).

(a) Show that the width of the plate at depth y is 2
√

r2 − y2.
(b) Calculate F as a function of r using Eq. (2).

y

r

r

2 r2 − y2

x

FIGURE 9

solution
(a) Place the origin at the center of the semicircle and point the positive y-axis downward. The equation for the edge of
the semicircular plate is then x2 + y2 = r2. At a depth of y, the plate extends from the point (−

√
r2 − y2, y) on the left

to the point (
√

r2 − y2, y) on the right. The width of the plate at depth y is then√
r2 − y2 −

(
−
√

r2 − y2
)

= 2
√

r2 − y2.

(b) With w = 9800 N/m3,

F = 2w

∫ r

0
y

√
r2 − y2 dy = −19,600

3
(r2 − y2)3/2

∣∣∣∣r
0

= 19,600r3

3
N.

6. Calculate the force on one side of a circular plate with radius 2 m, submerged vertically in a tank of water so that the
top of the circle is tangent to the water surface.

solution Place the origin at the point where the top of the circle is tangent to the water surface and orient the positive

y-axis pointing downward. The equation of the circle is then x2 + (y − 2)2 = 4, and the width at any depth y is
2
√

4 − (y − 2)2. Thus,

F = 2ρg

∫ 4

0
y

√
4 − (y − 2)2 dy,

Using the substitution y − 2 = 2 sin θ , dy = 2 cos θ dθ , the limits of integration become −π
2 ≤ θ ≤ π

2 , so we find

F = 2ρg

∫ 4

0
y

√
4 − (y − 2)2 dy

= 2ρg

∫ π/2

−π/2
(2 + 2 sin θ)(2 cos θ)(2 cos θ dθ) = 16ρg

∫ π/2

−π/2
cos2 θ + sin θ cos2 θ dθ

= 16ρg

(
1

2
θ + 1

2
sin θ cos θ − 1

3
cos3 θ

)∣∣∣∣π/2

−π/2

= 16ρg
(π

4
+ 0 − 0 − (−π

4
+ 0 − 0)

)
= 8ρgπ = 78,400π N.

7. A semicircular plate of radius r meters, oriented as in Figure 9, is submerged in water so that its diameter is located
at a depth of m meters. Calculate the fluid force on one side of the plate in terms of m and r .

solution Place the origin at the center of the semicircular plate with the positive y-axis pointing downward. The water

surface is then at y = −m. Moreover, at location y, the width of the plate is 2
√

r2 − y2 and the depth is y + m. Thus,

F = 2ρg

∫ r

0
(y + m)

√
r2 − y2 dy.
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Now, ∫ r

0
y

√
r2 − y2 dy = −1

3
(r2 − y2)3/2

∣∣∣∣r
0

= 1

3
r3.

Geometrically, ∫ r

0

√
r2 − y2 dy

represents the area of one quarter of a circle of radius r , and thus has the value πr2

4 . Bringing these results together, we
find that

F = 2ρg

(
1

3
r3 + π

4
r2
)

= 19,600

3
r3 + 4900mr2 N.

8. A plate extending from depth y = 2 m to y = 5 m is submerged in a fluid of density ρ = 850 kg/m3. The

horizontal width of the plate at depth y is f (y) = 2(1 + y2)−1. Calculate the fluid force on one side of the plate.

solution The fluid force on one side of the plate is given by

F = ρg

∫ 5

2
yf (y) dy = ρg

∫ 5

2
2y(1 + y2)−1 dy = ρg ln(1 + y2)

∣∣∣∣5
2

= ρg(ln 26 − ln 5)

= 8330 ln
26

5
≈ 13733.32 N.

9. Figure 10 shows the wall of a dam on a water reservoir. Use the Trapezoidal Rule and the width and depth measurements
in the figure to estimate the fluid force on the wall.

Depth (ft)

20 

0

600

900

1,100

1,400

1,650

1,800 (ft)

40

60

80

100

FIGURE 10

solution Let f (y) denote the width of the dam wall at depth y feet. Then the force on the dam wall is

F = w

∫ 100

0
yf (y) dy.

Using the Trapezoidal Rule and the width and depth measurements in the figure,

F ≈ w
20

2
[0 · f (0) + 2 · 20 · f (20) + 2 · 40 · f (40) + 2 · 60 · f (60) + 2 · 80 · f (80) + 100 · f (100)]

= 10w(0 + 66,000 + 112,000 + 132,000 + 144,000 + 60,000) = 321,250,000 lb.

10. Calculate the fluid force on a side of the plate in Figure 11(A), submerged in water.

3 m
4 m

7 m
2 m

(A) (B)

2 m

2 m

4 m

FIGURE 11

solution The width of the plate varies linearly from 4 meters at a depth of 3 meters to 7 meters at a depth of 5 meters.
Thus, at depth y, the width of the plate is

4 + 3

2
(y − 3) = 3

2
y − 1

2
.

Finally, the force on a side of the plate is

F = w

∫ 5

3
y

(
3

2
y − 1

2

)
dy = w

(
1

2
y3 − 1

4
y2
)∣∣∣∣5

3
= 45w = 441,000 N.
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11. Calculate the fluid force on a side of the plate in Figure 11(B), submerged in a fluid of mass density ρ = 800 kg/m3.

solution Because the fluid has a mass density of ρ = 800 kg/m3,

w = (800)(9.8) = 7840 N/m3.

For depths up to 2 meters, the width of the plate at depth y is y; for depths from 2 meters to 6 meters, the width of the
plate is a constant 2 meters. Thus,

F = w

∫ 2

0
y(y) dy + w

∫ 6

2
2y dy = w

y3

3

∣∣∣∣∣
2

0

+ wy2
∣∣∣6
2

= 8w

3
+ 32w = 104w

3
= 815,360

3
N.

12. Find the fluid force on the side of the plate in Figure 12, submerged in a fluid of density ρ = 1200 kg/m3. The top
of the place is level with the fluid surface. The edges of the plate are the curves y = x1/3 and y = −x1/3.

x
8

2 Fluid level

−8

y

y = x1/3y = −x1/3

FIGURE 12

solution At height y, the plate extends from the point (−y3, y) on the left to the point (y3, y) on the right; thus, the

width of the plate is f (y) = y3 − (−y3) = 2y3. Because the water surface is at height y = 2, the horizontal strip at
height y is at a depth of 2 − y. Consequently,

F = ρg

∫ 2

0
(2 − y)(2y3) dy = 2ρg

(
1

2
y4 − 1

5
y5
)∣∣∣∣2

0
= 16ρg

5
= 16 · 1200 · 9.8

5
= 37,632 N.

13. Let R be the plate in the shape of the region under y = sin x for 0 ≤ x ≤ π
2 in Figure 13(A). Find the fluid force on

a side of R if it is rotated counterclockwise by 90◦ and submerged in a fluid of density 1100 kg/m3 with its top edge level
with the surface of the fluid as in (B).

1

(A) (B)

Fluid level
y

y = sin x

x

R

Fluid level

R

p
2

FIGURE 13

solution Place the origin at the bottom corner of the plate with the positive y-axis pointing upward. The fluid surface
is then at height y = π

2 , and the horizontal strip of the plate at height y is at a depth of π
2 − y and has a width of sin y.

Now, using integration by parts we find

F = ρg

∫ π/2

0

(π

2
− y

)
sin y dy = ρg

[
−
(π

2
− y

)
cos y − sin y

]∣∣∣π/2

0
= ρg

(π

2
− 1

)

= 1100 · 9.8
(π

2
− 1

)
≈ 6153.184 N.

14. In the notation of Exercise 13, calculate the fluid force on a side of the plate R if it is oriented as in Figure 13(A).
You may need to use Integration by Parts and trigonometric substitution.

solution Place the origin at the lower left corner of the plate. Because the fluid surface is at height y = 1, the horizontal
strip at height y is at a depth of 1 − y. Moreover, this strip has a width of

π

2
− sin−1 y = cos−1 y.

Thus,

F = ρg

∫ 1

0
(1 − y) cos−1 y dy.
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Starting with integration by parts, we find

∫ 1

0
(1 − y) cos−1 y dy =

(
y − 1

2
y2
)

cos−1 y

∣∣∣∣1
0

+
∫ 1

0

y − 1
2y2√

1 − y2
dy

= 1

2
cos−1 1 +

∫ 1

0

y − 1
2y2√

1 − y2
dy =

∫ 1

0

y√
1 − y2

dy − 1

2

∫ 1

0

y2√
1 − y2

dy.

Now,

∫ 1

0

y√
1 − y2

dy = −
√

1 − y2
∣∣∣∣1
0

= 1.

For the remaining integral, we use the trigonometric substitution y = sin θ , dy = cos θ dθ and find

1

2

∫ 1

0

y2√
1 − y2

dy = 1

2

∫ y=1

y=0
sin2 θ dθ = 1

4
(θ − sin θ cos θ)

∣∣∣∣y=1

y=0

= 1

4

(
sin−1 y − y

√
1 − y2

) ∣∣∣∣1
0

= π

8
.

Finally,

F = ρg
(

1 − π

8

)
= 1100 · 9.8

(
1 − π

8

)
≈ 6546.70 N.

15. Calculate the fluid force on one side of a plate in the shape of region A shown Figure 14. The water surface is at
y = 1, and the fluid has density ρ = 900 kg/m3.

y = ln x
1

y

1 e
x

A

B

FIGURE 14

solution Because the fluid surface is at height y = 1, the horizontal strip at height y is at a depth of 1 − y. Moreover,
this strip has a width of e − ey . Thus,

F = ρg

∫ 1

0
(1 − y)(e − ey) dy = eρg

∫ 1

0
(1 − y) dy − ρg

∫ 1

0
(1 − y)ey dy.

Now,

∫ 1

0
(1 − y) dy =

(
y − 1

2
y2
)∣∣∣∣1

0
= 1

2
,

and using integration by parts

∫ 1

0
(1 − y)ey dy = (

(1 − y)ey + ey
) ∣∣∣∣1

0
= e − 2.

Combining these results, we find that

F = ρg

(
1

2
e − (e − 2)

)
= ρg

(
2 − 1

2
e

)
= 900 · 9.8

(
2 − 1

2
e

)
≈ 5652.37 N.

16. Calculate the fluid force on one side of the “infinite” plate B in Figure 14, assuming the fluid has density ρ = 900
kg/m3.

solution Because the fluid surface is at height y = 1, the horizontal strip at height y is at a depth of 1 − y. Moreover,
this strip has a width of ey . Thus,

F = ρg

∫ 0

−∞
(1 − y)ey dy.



March 30, 2011

1040 C H A P T E R 8 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

Using integration by parts, we find ∫ 0

−∞
(1 − y)ey dy = [

(1 − y)ey + ey
]∣∣0−∞ = 2.

Thus, F = 2ρg = 2 · 900 · 9.8 = 17,640 N.

17. Figure 15(A) shows a ramp inclined at 30◦ leading into a swimming pool. Calculate the fluid force on the ramp.

solution A horizontal strip at depth y has length 6 and width

�y

sin 30◦ = 2�y.

Thus,

F = 2ρg

∫ 4

0
6y dy = 96ρg.

If distances are in feet, then ρg = w = 62.5 lb/ft3 and F = 6000 lb; if distances are in meters, then ρg = 9800 N/m3

and F = 940,800 N.

18. Calculate the fluid force on one side of the plate (an isosceles triangle) shown in Figure 15(B).

4

6

Water surface

(A)

30˚

3

10

y
f (y)

Vertical
change Δy

(B)

Water surface

60˚

FIGURE 15

solution A horizontal strip at depth y has length f (y) = 3
10y and width

�y

sin 60◦ = 2√
3
�y.

Thus,

F =
√

3

5
w

∫ 10

0
y2 dy = 200

√
3

3
w.

If distances are in feet, then w = 62.5 lb/ft3 and F ≈ 7216.88 lb; if distances are in meters, then w = 9800 N/m3 and
F ≈ 1,131,606.5 N.

19. The massive Three Gorges Dam on China’s Yangtze River has height 185 m (Figure 16). Calculate the force on the
dam, assuming that the dam is a trapezoid of base 2000 m and upper edge 3000 m, inclined at an angle of 55◦ to the
horizontal (Figure 17).

FIGURE 16 Three Gorges Dam on
the Yangtze River

2000 m

3000 m

185 m55°

FIGURE 17

solution Let y = 0 be at the bottom of the dam, so that the top of the dam is at y = 185. Then the width of the dam

at height y is 2000 + 1000y
185 . The dam is inclined at an angle of 55◦ to the horizontal, so the height of a horizontal strip is

�y

sin 55◦ ≈ 1.221�y
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so that the area of such a strip is

1.221

(
2000 + 1000y

185

)
�y

Then

F = ρg

∫ 185

0
1.221y

(
2000 + 1000y

185

)
dy = ρg

∫ 185

0
2442y + 6.6y2 dy = ρg(1221y2 + 2.2y3)

∣∣∣∣185

0

= 55,718,300ρg = 55,718,300 · 9800 = 5.460393400 × 1011 N.

20. A square plate of side 3 m is submerged in water at an incline of 30◦ with the horizontal. Calculate the fluid force on
one side of the plate if the top edge of the plate lies at a depth of 6 m.

solution Because the plate is 3 meters on a side, is submerged at a horizontal angle of 30◦, and has its top edge located

at a depth of 6 meters, the bottom edge of the plate is located at a depth of 6 + 3 sin 30◦ = 15
2 meters. Let y denote the

depth at any point of the plate. The width of each horizontal strip of the plate is then

�y

sin 30◦ = 2�y,

and

F = ρg

∫ 15/2

6
(2)3y dy = (ρg)

243

4
= 595,350 N.

21. The trough in Figure 18 is filled with corn syrup, whose weight density is 90 lb/ft3. Calculate the force on the front
side of the trough.

a

dh

b

FIGURE 18

solution Place the origin along the top edge of the trough with the positive y-axis pointing downward. The width of
the front side of the trough varies linearly from b when y = 0 to a when y = h; thus, the width of the front side of the
trough at depth y feet is given by

b + a − b

h
y.

Now,

F = w

∫ h

0
y

(
b + a − b

h
y

)
dy = w

(
1

2
by2 + a − b

3h
y3
) ∣∣∣∣h

0
= w

(
b

6
+ a

3

)
h2 = (15b + 30a)h2 lb.

22. Calculate the fluid pressure on one of the slanted sides of the trough in Figure 18 when it is filled with corn syrup as
in Exercise 21.

solution

a

h

θ

b

b − a
2

The diagram above displays a side view of the trough. From this diagram, we see that

sin θ = h√(
b−a

2

)2 + h2

.

Thus,

F = w

sin θ

∫ h

0
d · y dy =

90

√(
b−a

2

)2 + h2

h

dh2

2
= 45dh

√(
b − a

2

)2
+ h2.
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Further Insights and Challenges
23. The end of the trough in Figure 19 is an equilateral triangle of side 3. Assume that the trough is filled with water to
height H . Calculate the fluid force on each side of the trough as a function of H and the length l of the trough.

H

l

3

FIGURE 19

solution Place the origin at the lower vertex of the trough and orient the positive y-axis pointing upward. First,

consider the faces at the front and back ends of the trough. A horizontal strip at height y has a length of
2y√

3
and is at a

depth of H − y. Thus,

F = w

∫ H

0
(H − y)

2y√
3

dy = w

(
H√

3
y2 − 2

3
√

3
y3
)∣∣∣∣H

0
=

√
3

9
wH 3.

For the slanted sides, we note that each side makes an angle of 60◦ with the horizontal. If we let � denote the length of
the trough, then

F = 2w�√
3

∫ H

0
(H − y) dy =

√
3

3
�wH 2.

24. A rectangular plate of side � is submerged vertically in a fluid of density w, with its top edge at depth h. Show that if
the depth is increased by an amount �h, then the force on a side of the plate increases by wA�h, where A is the area of
the plate.

solution Let F1 be the force on a side of the plate when its top edge is at depth h and F2 be the force on a side of the
plate when its top edge is at depth h + �h. Further, let b denote the width of the rectangular plate. Then

F1 = w

∫ h+�

h
yb dy = bw

(
y2

2

) ∣∣∣h+�

h
= bw

(
�2 + 2�h

2

)

F2 = w

∫ h+�+�h

h+�h
yb dy = bw

(
y2

2

) ∣∣∣h+�+�h

h+�h
= bw

�2 + 2�h + 2��h

2

and F2 − F1 = bw��h = wA�h.

25. Prove that the force on the side of a rectangular plate of area A submerged vertically in a fluid is equal to p0A, where
p0 is the fluid pressure at the center point of the rectangle.

solution Let � denote the length of the vertical side of the rectangle, x denote the length of the horizontal side of the
rectangle, and suppose the top edge of the rectangle is at depth y = m. The pressure at the center of the rectangle is then

p0 = w

(
m + �

2

)
,

and the force on the side of the rectangular plate is

F =
∫ �+m

m
wxy dy = wx

2

[
(� + m)2 − m2

]
= wx�

2
(� + 2m) = Aw

(
�

2
+ m

)
= Ap0.

26. If the density of a fluid varies with depth, then the pressure at depth y is a function p(y) (which need not equal
wy as in the case of constant density). Use Riemann sums to argue that the total force F on the flat side of a submerged
object submerged vertically is F = ∫ b

a f (y)p(y) dy, where f (y) is the width of the side at depth y.

solution Suppose the object extends from a depth of y = a to a depth of y = b. Divide the object into N horizontal
strips, each of width �y. Let p(y) denote the pressure within the fluid at depth y and f (y) denote the width of the flat
side of the submerged object at depth y. The approximate force on the j th strip (j = 1, 2, 3, . . . , N) is

p(yj )f (yj )�y,



March 30, 2011

S E C T I O N 8.3 Center of Mass 1043

where yj is a depth associated with the j th strip. Summing over all of the strips,

F ≈
N∑

j=1

p(yj )f (yj )�y.

As N → ∞, this Riemann sum converges to a definite integral, and

F =
∫ b

a
p(y)f (y) dy.

8.3 Center of Mass

Preliminary Questions
1. What are the x- and y-moments of a lamina whose center of mass is located at the origin?

solution Because the center of mass is located at the origin, it follows that Mx = My = 0.

2. A thin plate has mass 3. What is the x-moment of the plate if its center of mass has coordinates (2, 7)?

solution The x-moment of the plate is the product of the mass of the plate and the y-coordinate of the center of mass.
Thus, Mx = 3(7) = 21.

3. The center of mass of a lamina of total mass 5 has coordinates (2, 1). What are the lamina’s x- and y-moments?

solution The x-moment of the plate is the product of the mass of the plate and the y-coordinate of the center of
mass, whereas the y-moment is the product of the mass of the plate and the x-coordinate of the center of mass. Thus,
Mx = 5(1) = 5, and My = 5(2) = 10.

4. Explain how the Symmetry Principle is used to conclude that the centroid of a rectangle is the center of the rectangle.

solution Because a rectangle is symmetric with respect to both the vertical line and the horizontal line through the
center of the rectangle, the Symmetry Principle guarantees that the centroid of the rectangle must lie along both of these
lines. The only point in common to both lines of symmetry is the center of the rectangle, so the centroid of the rectangle
must be the center of the rectangle.

Exercises
1. Four particles are located at points (1, 1), (1, 2), (4, 0), (3, 1).

(a) Find the moments Mx and My and the center of mass of the system, assuming that the particles have equal mass m.

(b) Find the center of mass of the system, assuming the particles have masses 3, 2, 5, and 7, respectively.

solution

(a) Because each particle has mass m,

Mx = m(1) + m(2) + m(0) + m(1) = 4m;
My = m(1) + m(1) + m(4) + m(3) = 9m;

and the total mass of the system is 4m. Thus, the coordinates of the center of mass are

(
My

M
,
Mx

M

)
=
(

9m

4m
,

4m

4m

)
=
(

9

4
, 1

)
.

(b) With the indicated masses of the particles,

Mx = 3(1) + 2(2) + 5(0) + 7(1) = 14;
My = 3(1) + 2(1) + 5(4) + 7(3) = 46;

and the total mass of the system is 17. Thus, the coordinates of the center of mass are

(
My

M
,
Mx

M

)
=
(

46

17
,

14

17

)
.
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2. Find the center of mass for the system of particles of masses 4, 2, 5, 1 located at (1, 2), (−3, 2), (2, −1), (4, 0).

solution With the indicated masses and locations of the particles

Mx = 4(2) + 2(2) + 5(−1) + 1(0) = 7;
My = 4(1) + 2(−3) + 5(2) + 1(4) = 12;

and the total mass of the system is 12. Thus, the coordinates of the center of mass are(
My

M
,
Mx

M

)
=
(

1,
7

12

)
.

3. Point masses of equal size are placed at the vertices of the triangle with coordinates (a, 0), (b, 0), and (0, c). Show
that the center of mass of the system of masses has coordinates

( 1
3 (a + b), 1

3 c
)
.

solution Let each particle have mass m. The total mass of the system is then 3m. and the moments are

Mx = 0(m) + 0(m) + c(m) = cm; and

My = a(m) + b(m) + 0(m) = (a + b)m.

Thus, the coordinates of the center of mass are(
My

M
,
Mx

M

)
=
(

(a + b)m

3m
,
cm

3m

)
=
(

a + b

3
,
c

3

)
.

4. Point masses of mass m1, m2, and m3 are placed at the points (−1, 0), (3, 0), and (0, 4).

(a) Suppose that m1 = 6. Find m2 such that the center of mass lies on the y-axis.
(b) Suppose that m1 = 6 and m2 = 4. Find the value of m3 such that yCM = 2.

solution With the given masses and locations, we find

Mx = m1(0) + m2(0) + m3(4) = 4m3;
My = m1(−1) + m2(3) + m3(0) = 3m2 − m1;

and the total mass of the system is m1 + m2 + m3. Thus, the coordinates of the center of mass are(
3m2 − m1

m1 + m2 + m3
,

4m3

m1 + m2 + m3

)
.

(a) For the center of mass to lie on the y-axis, we must have 3m2 − m1 = 0, or m2 = 1
3m1. Given m1 = 6, it follows

that m2 = 2.
(b) To have yCM = 2 requires

4m3

m1 + m2 + m3
= 2 or m3 = m1 + m2.

Given m1 = 6 and m2 = 4, it follows that m3 = 10.

5. Sketch the lamina S of constant density ρ = 3 g/cm2 occupying the region beneath the graph of y = x2 for 0 ≤ x ≤ 3.

(a) Use Eqs. (1) and (2) to compute Mx and My .
(b) Find the area and the center of mass of S.

solution A sketch of the lamina is shown below

y

x

8

4

6

2

0 2 31 1.5 2.50.5

(a) Using Eq. (2),

Mx = 3
∫ 9

0
y(3 − √

y) dy =
(

9y2

2
− 6

5
y5/2

) ∣∣∣∣9
0

= 729

10
.

Using Eq. (1),

My = 3
∫ 3

0
x(x2) dx = 3x4

4

∣∣∣∣3
0

= 243

4
.
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(b) The area of the lamina is

A =
∫ 3

0
x2 dx = x3

3

∣∣∣∣3
0

= 9 cm2.

With a constant density of ρ = 3 g/cm2, the mass of the lamina is M = 27 grams, and the coordinates of the center of
mass are (

My

M
,
Mx

M

)
=
(

243/4

27
,

729/10

27

)
=
(

9

4
,

27

10

)
.

6. Use Eqs. (1) and (3) to find the moments and center of mass of the lamina S of constant density ρ = 2 g/cm2

occupying the region between y = x2 and y = 9x over [0, 3]. Sketch S, indicating the location of the center of mass.

solution With ρ = 2 g/cm2,

Mx = 1

2
(2)

∫ 3

0

(
(9x)2 − (x2)2

)
dx = 3402

5
,

and

My = 2
∫ 3

0
x(9x − x2) dx = 243

2
.

The mass of the lamina is

M = 2
∫ 3

0
(9x − x2) dx = 63 g,

so the coordinates of the center of mass are (
My

M
,
Mx

M

)
=
(

243

126
,

3402

315

)
.

A sketch of the lamina, with the location of the center of mass indicated, is shown below.

x

y

0.5 1 1.5 2 2.5 30

5

10

15

20

25

7. Find the moments and center of mass of the lamina of uniform density ρ occupying the region underneath y = x3

for 0 ≤ x ≤ 2.

solution With uniform density ρ,

Mx = 1

2
ρ

∫ 2

0
(x3)2 dx = 64ρ

7
and My = ρ

∫ 2

0
x(x3) dx = 32ρ

5
.

The mass of the lamina is

M = ρ

∫ 2

0
x3 dx = 4ρ,

so the coordinates of the center of mass are (
My

M
,
Mx

M

)
=
(

8

5
,

16

7

)
.

8. Calculate Mx (assuming ρ = 1) for the region underneath the graph of y = 1 − x2 for 0 ≤ x ≤ 1 in two ways, first
using Eq. (2) and then using Eq. (3).

solution By Eq. (2),

Mx =
∫ 1

0
y
√

1 − y dy.
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Using the substitution u = 1 − y, du = −dy, we find

Mx =
∫ 1

0
(1 − u)

√
u du =

(
2

3
u3/2 − 2

5
u5/2

)∣∣∣∣1
0

= 4

15
.

By Eq. (3),

Mx = 1

2

∫ 1

0
(1 − x2)2 dx = 1

2

(
x − 2

3
x3 + 1

5
x5
)∣∣∣∣1

0
= 4

15
.

9. Let T be the triangular lamina in Figure 17.

(a) Show that the horizontal cut at height y has length 4 − 2
3y and use Eq. (2) to compute Mx (with ρ = 1).

(b) Use the Symmetry Principle to show that My = 0 and find the center of mass.

y

−2 2

6

x

FIGURE 17 Isosceles triangle.

solution
(a) The equation of the line from (2, 0) to (0, 6) is y = −3x + 6, so

x = 2 − 1

3
y.

The length of the horizontal cut at height y is then

2

(
2 − 1

3
y

)
= 4 − 2

3
y,

and

Mx =
∫ 6

0
y

(
4 − 2

3
y

)
dy = 24.

(b) Because the triangular lamina is symmetric with respect to the y-axis, xcm = 0, which implies that My = 0. The
total mass of the lamina is

M = 2
∫ 2

0
(−3x + 6) dx = 12,

so ycm = 24/12. Finally, the coordinates of the center of mass are (0, 2).

In Exercises 10–17, find the centroid of the region lying underneath the graph of the function over the given interval.

10. f (x) = 6 − 2x, [0, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

0
(6 − 2x)2 dx = 18 and My =

∫ 3

0
x(6 − 2x) dx = 9.

The area of the region is

A =
∫ 3

0
(6 − 2x) dx = 9,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
= (1, 2).

11. f (x) = √
x, [1, 4]

solution The moments of the region are

Mx = 1

2

∫ 4

1
x dx = 15

4
and My =

∫ 4

1
x
√

x dx = 62

5
.
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The area of the region is

A =
∫ 4

1

√
x dx = 14

3
,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

93

35
,

45

56

)
.

12. f (x) = x3, [0, 1]
solution The moments of the region are

Mx = 1

2

∫ 1

0
x6 dx = 1

14
and My =

∫ 1

0
x4 dx = 1

5
.

The area of the region is

A =
∫ 1

0
x3 dx = 1

4
,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

4

5
,

2

7

)
.

13. f (x) = 9 − x2, [0, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

0
(9 − x2)2 dx = 324

5
and My =

∫ 3

0
x(9 − x2) dx = 81

4
.

The area of the region is

A =
∫ 3

0
(9 − x2) dx = 18,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

9

8
,

18

5

)
.

14. f (x) = (1 + x2)−1/2, [0, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

0

1

1 + x2
dx = tan−1 x

2

∣∣∣∣3
0

= 1

2
tan−1 3 and My =

∫ 3

0

x√
1 + x2

dx = √
10 − 1.

The area of the region is

A =
∫ 3

0

1√
1 + x2

dx = ln |x +
√

1 + x2|
∣∣∣∣3
0

= ln(3 + √
10),

so the coordinates of the centroid are(
My

A
,
Mx

A

)
=
( √

10 − 1

ln(3 + √
10)

,
tan−1 3

2 ln(3 + √
10)

)
.

15. f (x) = e−x , [0, 4]
solution The moments of the region are

Mx = 1

2

∫ 4

0
e−2x dx = 1

4

(
1 − e−8

)
and My =

∫ 4

0
xe−x dx = −e−x(x + 1)

∣∣∣∣4
0

= 1 − 5e−4.
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The area of the region is

A =
∫ 4

0
e−x dx = 1 − e−4,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

1 − 5e−4

1 − e−4
,

1 − e−8

4(1 − e−4)

)
.

16. f (x) = ln x, [1, 2]
solution The moments of the region are

Mx = 1

2

∫ 2

1
(ln x)2 dx = 1

2
(x(ln x)2 − 2x ln x + 2x)

∣∣∣∣2
1

= (ln 2)2 − 2 ln 2 + 1; and

My =
∫ 2

1
x ln x dx =

(
1

2
x2 ln x − 1

4
x2
)∣∣∣∣2

1
= 2 ln 2 − 3

4
.

The area of the region is

A =
∫ 2

1
ln x dx = (x ln x − x)

∣∣∣∣2
1

= 2 ln 2 − 1,

so the coordinates of the centroid are

(
My

A
,
Mx

A

)
=
(

2 ln 2 − 3
4

2 ln 2 − 1
,
(ln 2)2 − 2 ln 2 + 1

2 ln 2 − 1

)
.

17. f (x) = sin x, [0, π ]
solution The moments of the region are

Mx = 1

2

∫ π

0
sin2 x dx = 1

4
(x − sin x cos x)

∣∣∣∣π
0

= π

4
; and

My =
∫ π

0
x sin x dx = (−x cos x + sin x)

∣∣∣∣π
0

= π.

The area of the region is

A =
∫ π

0
sin x dx = 2,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(π

2
,
π

8

)
.

18. Calculate the moments and center of mass of the lamina occupying the region between the curves y = x and y = x2

for 0 ≤ x ≤ 1.

solution The moments of the lamina are

Mx = 1

2

∫ 1

0
(x2 − x4) dx = 1

15
and My =

∫ 1

0
x(x − x2) dx = 1

12
.

The area of the lamina is

A =
∫ 1

0
(x − x2) dx = 1

6
,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

1

2
,

2

5

)
.
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19. Sketch the region between y = x + 4 and y = 2 − x for 0 ≤ x ≤ 2. Using symmetry, explain why the centroid of
the region lies on the line y = 3. Verify this by computing the moments and the centroid.

solution A sketch of the region is shown below.

0.5

1

2

3

4

5

y

x
1.0 1.5 2.0

The region is clearly symmetric about the line y = 3, so we expect the centroid of the region to lie along this line. We find

Mx = 1

2

∫ 2

0

(
(x + 4)2 − (2 − x)2

)
dx = 24;

My =
∫ 2

0
x ((x + 4) − (2 − x)) dx = 28

3
; and

A =
∫ 2

0
((x + 4) − (2 − x)) dx = 8.

Thus, the coordinates of the centroid are
( 7

6 , 3
)
.

In Exercises 20–25, find the centroid of the region lying between the graphs of the functions over the given interval.

20. y = x, y = √
x, [0, 1]

solution The moments of the region are

Mx = 1

2

∫ 1

0
(x − x2) dx = 1

12
and My =

∫ 1

0
x(

√
x − x) dx = 1

15
.

The area of the region is

A =
∫ 1

0
(
√

x − x) dx = 1

6
,

so the coordinates of the centroid are (
6

15
,

1

2

)
.

21. y = x2, y = √
x, [0, 1]

solution The moments of the region are

Mx = 1

2

∫ 1

0
(x − x4) dx = 3

20
and My =

∫ 1

0
x(

√
x − x2) dx = 3

20
.

The area of the region is

A =
∫ 1

0
(
√

x − x2) dx = 1

3
,

so the coordinates of the centroid are (
9

20
,

9

20

)
.

Note: This makes sense, since the functions are inverses of each other. This makes the region symmetric with respect to
the line y = x. Thus, by the symmetry principle, the center of mass must lie on that line.
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22. y = x−1, y = 2 − x, [1, 2]
solution The moments of the region are

Mx = 1

2

∫ 2

1

[(
1

x

)2
− (2 − x)2

]
dx = 1

12
and My =

∫ 2

1
x

(
1

x
− (2 − x)

)
dx = 1

3
.

The area of the region is

A =
∫ 2

1

(
1

x
− (2 − x)

)
dx = ln 2 − 1

2
,

so the coordinates of the centroid are (
2

6 ln 2 − 3
,

1

12 ln 2 − 6

)
.

23. y = ex , y = 1, [0, 1]
solution The moments of the region are

Mx = 1

2

∫ 1

0
(e2x − 1) dx = e2 − 3

4
and My =

∫ 1

0
x(ex − 1) dx =

(
xex − ex − 1

2
x2
)∣∣∣∣1

0
= 1

2
.

The area of the region is

A =
∫ 1

0
(ex − 1) dx = e − 2,

so the coordinates of the centroid are (
1

2(e − 2)
,

e2 − 3

4(e − 2)

)
.

24. y = ln x, y = x − 1, [1, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

1

[
(x − 1)2 − (ln x)2

]
dx =

(
1

3
x3 − x2 − x − x(ln x)2 + 2x ln x

) ∣∣∣∣3
1

= 3 ln 3 − 3

2
(ln 3)2 − 2

3
; and

My =
∫ 3

1
x((x − 1) − ln x) dx =

(
1

3
x3 − 1

2
x2 ln x − 1

4
x2
) ∣∣∣∣3

1
= 20

3
− 9

2
ln 3.

The area of the region is

A =
∫ 3

1
(x − 1 − ln x) dx =

(
1

2
x2 − x ln x

)∣∣∣∣3
1

= 4 − 3 ln 3,

so the coordinates of the centroid are (
40 − 27 ln 3

24 − 18 ln 3
,

18 ln 3 − 9(ln 3)2 − 4

24 − 18 ln 3

)
.

25. y = sin x, y = cos x, [0, π/4]
solution The moments of the region are

Mx = 1

2

∫ π/4

0
(cos2 x − sin2 x) dx = 1

2

∫ π/4

0
cos 2x dx = 1

4
; and

My =
∫ π/4

0
x(cos x − sin x) dx = [(x − 1) sin x + (x + 1) cos x]

∣∣∣∣π/4

0
= π

√
2

4
− 1.

The area of the region is

A =
∫ π/4

0
(cos x − sin x) dx = √

2 − 1,

so the coordinates of the centroid are (
π

√
2 − 4

4(
√

2 − 1)
,

1

4(
√

2 − 1)

)
.
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26. Sketch the region enclosed by y = x + 1, and y = (x − 1)2, and find its centroid.

solution A sketch of the region is shown below.

−1

1

2

3

4

5

1 2 3

y

x

The moments of the region are

Mx = 1

2

∫ 3

0
(x + 1)2 − (x − 1)4 dx = 1

2

(
1

3
(x + 1)3 − 1

5
(x − 1)5

) ∣∣∣∣3
0

= 1

2

(
64

3
− 32

5
− 1

3
− 1

5

)
= 36

5

My =
∫ 3

0
x((x + 1) − (x − 1)2) dx =

∫ 3

0
3x2 − x3 dx =

(
x3 − 1

4
x4
) ∣∣∣∣3

0
= 27

4

The area of the region is

A =
∫ 3

0
(x + 1) − (x − 1)2 dx =

∫ 3

0
−x2 + 3x dx =

(
−1

3
x3 + 3

2
x2
) ∣∣∣∣3

0
= 9

2

so that the coordinates of the centroid are (
27

4
· 2

9
,

36

5
· 2

9

)
=
(

3

2
,

8

5

)
s

27. Sketch the region enclosed by y = 0, y = (x + 1)3, and y = (1 − x)3, and find its centroid.

solution A sketch of the region is shown below.

1

1

−1

y

x

The moments of the region are

Mx = 1

2

(∫ 0

−1
(x + 1)6 dx +

∫ 1

0
(1 − x)6 dx

)
= 1

7
; and

My = 0 by the Symmetry Principle.

The area of the region is

A =
∫ 0

−1
(x + 1)3 dx +

∫ 1

0
(1 − x)3 dx = 1

2
,

so the coordinates of the centroid are
(
0, 2

7

)
.

In Exercises 28–32, find the centroid of the region.

28. Top half of the ellipse
(x

2

)2 +
(y

4

)2 = 1

solution The equation of the top half of the ellipse is y =
√

16 − 4x2. Thus,

Mx = 1

2

∫ 2

−2

(√
16 − 4x2

)2
dx = 64

3
.

By the Symmetry Principle, My = 0. The area of the region is one-half the area of an ellipse with major axis 4 and minor

axis 2; i.e., 1
2π(4)(2) = 4π . Finally, the coordinates of the centroid are(

0,
16

3π

)
.
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29. Top half of the ellipse
(x

a

)2 +
(y

b

)2 = 1 for arbitrary a, b > 0

solution The equation of the top half of the ellipse is

y =
√

b2 − b2x2

a2

Thus,

Mx = 1

2

∫ a

−a

⎛
⎝
√

b2 − b2x2

a2

⎞
⎠

2

dx = 2ab2

3
.

By the Symmetry Principle, My = 0. The area of the region is one-half the area of an ellipse with axes of length a and

b; i.e., 1
2πab. Finally, the coordinates of the centroid are(

0,
4b

3π

)
.

30. Semicircle of radius r with center at the origin

solution The equation of the top half of the circle is y =
√

r2 − x2. Thus,

Mx = 1

2

∫ r

−r

(√
r2 − x2

)2
dx = 2r3

3
.

By the Symmetry Principle, My = 0. The area of the region is one-half the area of a circle of radius r; i.e., 1
2πr2. Finally,

the coordinates of the centroid are (
0,

4r

3π

)
.

31. Quarter of the unit circle lying in the first quadrant

solution By the Symmetry Principle, the center of mass must lie on the line y = x in the first quadrant. Therefore,

we need only calculate one of the moments of the region. With y =
√

1 − x2, we find

My =
∫ 1

0
x
√

1 − x2 dx = 1

3
.

The area of the region is one-quarter of the area of a unit circle; i.e., 1
4π . Thus, the coordinates of the centroid are(

4

3π
,

4

3π

)
.

32. Triangular plate with vertices (−c, 0), (0, c), (a, b), where a, b, c > 0, and b < c

solution By symmetry, the center of mass must lie on the line connecting (−c, 0) and the midpoint (a/2, (b + c)/2)

of the opposite side:

�1 : y = b + c

a + 2c
(x + c)

Also by symmetry, the center of mass must lie on the line connecting (0, c) and the midpoint ((a − c)/2, b/2) of the
opposite side:

�2 : y = b − 2c

a − c
x + c

These lines intersect at one point (xcm, ycm). Equating the formulas for the two lines and solving for x yields

x = a − c

3
.

Substituting this value for x into the equation for �2 gives

y = b − 2c

a − c

a − c

3
+ c = b + c

3
.

Hence, the coordinates of the centroid are (
a − c

3
,
b + c

3

)
.
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33. Find the centroid for the shaded region of the semicircle of radius r in Figure 18. What is the centroid when r = 1
and h = 1

2 ? Hint: Use geometry rather than integration to show that the area of the region is r2 sin−1(
√

1 − h2/r2) −
h
√

r2 − h2).

y

x
hr

FIGURE 18

solution From the symmetry of the region, it is obvious that the centroid lies along the y-axis. To determine the
y-coordinate of the centroid, we must calculate the moment about the x-axis and the area of the region. Now, the length
of the horizontal cut of the semicircle at height y is√

r2 − y2 −
(

−
√

r2 − y2
)

= 2
√

r2 − y2.

Therefore, taking ρ = 1, we find

Mx = 2
∫ r

h
y

√
r2 − y2 dy = 2

3
(r2 − h2)3/2.

Observe that the region is comprised of a sector of the circle with the triangle between the two radii removed. The angle
of the sector is 2θ , where θ = sin−1

√
1 − h2/r2, so the area of the sector is 1

2 r2(2θ) = r2 sin−1
√

1 − h2/r2. The

triangle has base 2
√

r2 − h2 and height h, so the area is h
√

r2 − h2. Therefore,

YCM = Mx

A
=

2
3 (r2 − h2)3/2

r2 sin−1
√

1 − h2/r2 − h
√

r2 − h2
.

When r = 1 and h = 1/2, we find

YCM =
2
3 (3/4)3/2

sin−1
√

3
2 −

√
3

4

= 3
√

3

4π − 3
√

3
.

34. Sketch the region between y = xn and y = xm for 0 ≤ x ≤ 1, where m > n ≥ 0 and find the COM of the region.
Find a pair (n, m) such that the COM lies outside the region.

solution A sketch of the region for x3 and x4 is below.

0.2

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0

y

x

Since m > n ≥ 0, the graph of xn lies above that of xm for x between 0 and 1. Thus the moments are

Mx = 1

2

∫ 1

0
x2n − x2m dx = 1

2

(
1

2n + 1
x2n+1 − 1

2m + 1
x2m+1

) ∣∣∣∣1
0

= 1

2

(
1

2n + 1
− 1

2m + 1

)
= m − n

(2n + 1)(2m + 1)

My =
∫ 1

0
x(xn − xm) dx =

∫ 1

0
xn+1 − xm+1 dx =

(
1

n + 2
xn+2 − 1

m + 2
xm+2

) ∣∣∣∣1
0

= 1

n + 2
− 1

m + 2
= m − n

(n + 2)(m + 2)
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The area of the region is

A =
∫ 1

0
xn − xm dx = 1

n + 1
− 1

m + 1
= m − n

(n + 1)(m + 1)

Thus the center of mass has coordinates(
(n + 1)(m + 1)

(n + 2)(m + 2)
,

(n + 1)(m + 1)

(2n + 1)(2m + 1)

)

In the case graphed above, for n = 3, m = 4, the center of mass is(
20

30
,

20

63

)
=
(

2

3
,

20

63

)

and (
2

3

)3
= 8

27
<

20

63

Thus the point
(

2
3 , 8

27

)
lies on y = x3 and then the curve y = x3 lies below the center of mass of the region.

In Exercises 35–37, use the additivity of moments to find the COM of the region.

35. Isosceles triangle of height 2 on top of a rectangle of base 4 and height 3 (Figure 19)

y

−2 2

2

3

x

FIGURE 19

solution The region is symmetric with respect to the y-axis, so My = 0 by the Symmetry Principle. The moment
about the x-axis for the rectangle is

Mrect
x = 1

2

∫ 2

−2
32 dx = 18,

whereas the moment about the x-axis for the triangle is

M
triangle
x =

∫ 5

3
y(10 − 2y) dy = 44

3
.

The total moment about the x-axis is then

Mx = Mrect
x + M

triangle
x = 18 + 44

3
= 98

3
.

Because the area of the region is 12 + 4 = 16, the coordinates of the center of mass are(
0,

49

24

)
.

36. An ice cream cone consisting of a semicircle on top of an equilateral triangle of side 6 (Figure 20)

y

−3 3

6

x

FIGURE 20
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solution The region is symmetric with respect to the y-axis, so My = 0 by the Symmetry Principle. The moment
about the x-axis for the triangle is

M
triangle
x = 2√

3

∫ 3
√

3

0
y2 dy = 54.

For the semicircle, first note that the center is (0, 3
√

3), so the equation is x2 + (y − 3
√

3)2 = 9, and

Msemi
x = 2

∫ 3+3
√

3

3
√

3
y

√
9 − (y − 3

√
3)2 dy.

Using the substitution w = y − 3
√

3, dw = dy, we find

Msemi
x = 2

∫ 3

0
(w + 3

√
3)
√

9 − w2 dw

= 2
∫ 3

0
w
√

9 − w2 dw + 6
√

3
∫ 3

0

√
9 − w2 dw = 18 + 27π

√
3

2
,

where we have used the fact that
∫ 3

0

√
9 − w2 dw represents the area of one-quarter of a circle of radius 3. The total

moment about the x-axis is then

Mx = M
triangle
x + Msemi

x = 72 + 27π
√

3

2
.

Because the area of the region is 9
√

3 + 9π
2 , the coordinates of the center of mass are(

0,
16 + 3π

√
3

π + 2
√

3

)
.

37. Three-quarters of the unit circle (remove the part in the fourth quadrant)

solution By the Symmetry Principle, the center of mass must lie on the line y = −x. Let region 1 be the semicircle
above the x-axis and region 2 be the quarter circle in the third quadrant. Because region 1 is symmetric with respect to
the y-axis, M1

y = 0 by the Symmetry Principle. Furthermore

M2
y =

∫ 0

−1
x
√

1 − x2 dx = −1

3
.

Thus, My = M1
y + M2

y = 0 + (− 1
3 ) = − 1

3 . The area of the region is 3π/4, so the coordinates of the centroid are

(
− 4

9π
,

4

9π

)
.

38. Let S be the lamina of mass density ρ = 1 obtained by removing a circle of radius r from the circle of radius 2r

shown in Figure 21. Let MS
x and MS

y denote the moments of S. Similarly, let M
big
y and Msmall

y be the y-moments of the
larger and smaller circles.

y

x
r

2r

FIGURE 21

(a) Use the Symmetry Principle to show that MS
x = 0.

(b) Show that MS
y = M

big
y − Msmall

y using the additivity of moments.

(c) Find M
big
y and Msmall

y using the fact that the COM of a circle is its center. Then compute MS
y using (b).

(d) Determine the COM of S.

solution

(a) Because S is symmetric with respect to the x-axis, MS
x = 0.
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(b) Because the small circle together with the region S comprise the big circle, by the additivity of moments,

MS
y + Msmall

y = M
big
y .

Thus MS
y = M

big
y − Msmall

y .

(c) The center of the big circle is the origin, so x
big
cm = 0; consequently, M

big
y = 0. On the other hand, the center of the

small circle is (−r, 0), so xsmall
cm = −r; consequently

Msmall
y = xsmall

cm · Asmall = −r · πr2 = −πr3.

By the result of part (b), it follows that MS
y = 0 − (−πr3) = πr3.

(d) The area of the region S is 4πr2 − πr2 = 3πr2. The coordinates of the center of mass of the region S are then(
πr3

3πr2
, 0

)
=
( r

3
, 0
)

.

39. Find the COM of the laminas in Figure 22 obtained by removing squares of side 2 from a square of side 8.

8

22

8

FIGURE 22

solution Start with the square on the left. Place the square so that the bottom left corner is at (0, 0). By the Symmetry
Principle, the center of mass must lie on the lines y = x and y = 8 − x. The only point in common to these two lines is
(4, 4), so the center of mass is (4, 4).

Now consider the square on the right. Place the square as above. By the symmetry principle, xcm = 4. Now, let s1
denote the square in the upper left, s2 denote the square in the upper right, and B denote the entire square. Then

Ms1
x = 1

2

∫ 2

0
(82 − 62) dx = 28;

Ms2
x = 1

2

∫ 8

6
(82 − 62) dx = 28; and

MB
x = 1

2

∫ 8

0
82 dx = 256.

By the additivity of moments, Mx = 256 − 28 − 28 = 200. Finally, the area of the region is A = 64 − 4 − 4 = 56, so
the coordinates of the center of mass are (

4,
200

56

)
=
(

4,
25

7

)
.

Further Insights and Challenges
40. A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Show that the centroid of
a triangle lies on each of its medians, at a distance two-thirds down from the vertex. Then use this fact to prove that the
three medians intersect at a single point. Hint: Simplify the calculation by assuming that one vertex lies at the origin and
another on the x-axis.

solution Orient the triangle by placing one vertex at (0, 0) and the long side of the triangle along the x-axis. Label
the vertices (0, 0), (a, 0), (b, c). Thus, the equations of the short sides are y = cx

b
and y = cx

b−a
− ac

b−a
. Now,

Mx = 1

2

∫ b

0
(cx/b)2 dx + 1

2

∫ a

b

(
cx − ac

b − a

)2
dx = ac2

6
;

My =
∫ b

0
x(cx/b) dx +

∫ a

b
x

(
cx − ac

b − a

)
dx = ac(a + b)

6
; and

M = ac

2
.
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so the center of mass is

(
a + b

3
,
c

3

)
. To show that the centroid lies on each median, let y1 be the median from (b, c), y2

the median from (0, 0) and y3 the median from (a, 0). We find

y1(x) = 2c

2b − a
(x − a/2), so y1

(
a + b

3

)
= c

3
;

y2(x) = c

a + b
x, so y2

(
a + b

3

)
= c

3
;

y3(x) = c

b − 2a
(x − a), so y3

(
a + b

3

)
= c

3
.

This shows that the center of mass lies on each median. We now show that the center of mass is 2
3 of the way from each

vertex. For y1, note that x = b gives the vertex and x = a
2 gives the midpoint of the opposite side, so two-thirds of this

distance is

x = b + 2

3

(a

2
− b

)
= a + b

3
,

the x-coordinate of the center of mass. Likewise, for y2, two-thirds of the distance from x = 0 to x = a+b
2 is a+b

3 , and
for y3, the two-thirds point is

x = a + 2

3

(
b

2
− a

)
= a + b

3
.

A similar method shows that the y-coordinate is also two-thirds of the way along the median. Thus, since the centroid lies
on all three medians, we can conclude that all three medians meet at a single point, namely the centroid.

41. Let P be the COM of a system of two weights with masses m1 and m2 separated by a distance d. Prove Archimedes’
Law of the (weightless) Lever: P is the point on a line between the two weights such that m1L1 = m2L2, where Lj is
the distance from mass j to P .

solution Place the lever along the x-axis with mass m1 at the origin. Then My = m2d and the x-coordinate of the
center of mass, P , is

m2d

m1 + m2
.

Thus,

L1 = m2d

m1 + m2
, L2 = d − m2d

m1 + m2
= m1d

m1 + m2
,

and

L1m1 = m1
m2d

m1 + m2
= m2

m1d

m1 + m2
= L2m2.

42. Find the COM of a system of two weights of masses m1 and m2 connected by a lever of length d whose mass density
ρ is uniform. Hint: The moment of the system is the sum of the moments of the weights and the lever.

solution Let A be the cross-sectional area of the rod. Place the rod with m1 at the origin and rod lying on the positive

x-axis. The y-moment of the rod is My = 1
2ρAd2, the y-moment of the mass m2 is My = m2d, and the total mass of

the system is M = m1 + m2 + ρAd. Therefore, the x-coordinate of the center of mass is

m2d + 1
2ρAd2

m1 + m2 + ρAd
.

43. Symmetry Principle Let R be the region under the graph of f (x) over the interval [−a, a], where f (x) ≥
0. Assume that R is symmetric with respect to the y-axis.

(a) Explain why f (x) is even—that is, why f (x) = f (−x).
(b) Show that xf (x) is an odd function.
(c) Use (b) to prove that My = 0.
(d) Prove that the COM of R lies on the y-axis (a similar argument applies to symmetry with respect to the x-axis).

solution
(a) By the definition of symmetry with respect to the y-axis, f (x) = f (−x), so f is even.
(b) Let g(x) = xf (x) where f is even. Then

g(−x) = −xf (−x) = −xf (x) = −g(x),

and thus g is odd.
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(c) My = ρ

∫ a

−a
xf (x) dx = 0 since xf (x) is an odd function.

(d) By part (c), xcm = My

M
= 0

M
= 0 so the center of mass lies along the y-axis.

44. Prove directly that Eqs. (2) and (3) are equivalent in the following situation. Let f (x) be a positive decreasing function
on [0, b] such that f (b) = 0. Set d = f (0) and g(y) = f −1(y). Show that

1

2

∫ b

0
f (x)2 dx =

∫ d

0
yg(y) dy

Hint: First apply the substitution y = f (x) to the integral on the left and observe that dx = g′(y) dy. Then apply
Integration by Parts.

solution f (x) ≥ 0 and f ′(x) < 0 shows that f has an inverse g on [a, b]. Because f (b) = 0, f (0) = d, and

f −1(x) = g(x), it follows that g(d) = 0 and g(0) = b. If we let x = g(y), then dx = g′(y) dy. Thus, with y = f (x),

1

2

∫ b

0
f (x)2 dx = 1

2

∫ b

0
y2 dx = 1

2

∫ 0

d
y2g′(y) dy.

Using Integration by Parts with u = y2 and v′ = g′(y) dy, we find

1

2

∫ 0

d
y2g′(y) dy = 1

2

[
y2g(y)

∣∣∣∣0
d

− 2
∫ 0

d
yg(y) dy

]
= 1

2

[
0 − d2g(d)

]
−
∫ 0

d
yg(y) dy =

∫ d

0
yg(y) dy.

45. Let R be a lamina of uniform density submerged in a fluid of density w (Figure 23). Prove the following law: The fluid
force on one side of R is equal to the area of R times the fluid pressure on the centroid. Hint: Let g(y) be the horizontal
width of R at depth y. Express both the fluid pressure [Eq. (2) in Section 8.2] and y-coordinate of the centroid in terms
of g(y).

y

yCM

y (depth)

Fluid level

Centroid

g(y)

FIGURE 23

solution Let ρ denote the uniform density of the submerged lamina. Then

Mx = ρ

∫ b

a
yg(y) dy,

and the mass of the lamina is

M = ρ

∫ b

a
g(y) dy = ρA,

where A is the area of the lamina. Thus, the y-coordinate of the centroid is

ycm = ρ
∫ b
a yg(y) dy

ρA
=
∫ b
a yg(y) dy

A
.

Now, the fluid force on the lamina is

F = w

∫ b

a
yg(y) dy = w

∫ b
a yg(y) dy

A
A = wycmA.

In other words, the fluid force on the lamina is equal to the fluid pressure at the centroid of the lamina times the area of
the lamina.

8.4 Taylor Polynomials

Preliminary Questions
1. What is T3(x) centered at a = 3 for a function f (x) such that f (3) = 9, f ′(3) = 8, f ′′(3) = 4, and f ′′′(3) = 12?

solution In general, with a = 3,

T3(x) = f (3) + f ′(3)(x − 3) + f ′′(3)

2
(x − 3)2 + f ′′′(3)

6
(x − 3)3.
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Using the information provided, we find

T3(x) = 9 + 8(x − 3) + 2(x − 3)2 + 2(x − 3)3.

2. The dashed graphs in Figure 9 are Taylor polynomials for a functionf (x). Which of the two is a Maclaurin polynomial?

x x
2 31

2

31

-1 -1

y = f (x)y = f (x)

y y

(A) (B)

FIGURE 9

solution A Maclaurin polynomial always gives the value of f (0) exactly. This is true for the Taylor polynomial
sketched in (B); thus, this is the Maclaurin polynomial.

3. For which value of x does the Maclaurin polynomial Tn(x) satisfy Tn(x) = f (x), no matter what f (x) is?

solution A Maclaurin polynomial always gives the value of f (0) exactly.

4. Let Tn(x) be the Maclaurin polynomial of a function f (x) satisfying |f (4)(x)| ≤ 1 for all x. Which of the following
statements follow from the error bound?

(a) |T4(2) − f (2)| ≤ 2
3

(b) |T3(2) − f (2)| ≤ 2
3

(c) |T3(2) − f (2)| ≤ 1
3

solution For a function f (x) satisfying |f (4)(x)| ≤ 1 for all x,

|T3(2) − f (2)| ≤ 1

24
|f (4)(x)|24 ≤ 16

24
<

2

3
.

Thus, (b) is the correct answer.

Exercises
In Exercises 1–14, calculate the Taylor polynomials T2(x) and T3(x) centered at x = a for the given function and value
of a.

1. f (x) = sin x, a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = sin x f (a) = 0

f ′(x) = cos x f ′(a) = 1

f ′′(x) = − sin x f ′′(a) = 0

f ′′′(x) = − cos x f ′′′(a) = −1

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 0 + 1(x − 0) + 0

2
(x − 0)2 = x; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 0 + 1(x − 0) + 0

2
(x − 0)2 + −1

6
(x − 0)3 = x − 1

6
x3.



March 30, 2011

1060 C H A P T E R 8 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

2. f (x) = sin x, a = π

2

solution First, we calculate and evaluate the needed derivatives:

f (x) = sin x f (a) = 1

f ′(x) = cos x f ′(a) = 0

f ′′(x) = − sin x f ′′(a) = −1

f ′′′(x) = − cos x f ′′′(a) = 0

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 1 + 0
(
x − π

2

)
+ −1

2

(
x − π

2

)2 = 1 − 1

2

(
x − π

2

)2 ; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1 + 0
(
x − π

2

)
+ −1

2

(
x − π

2

)2 + 0

6

(
x − π

2

)3 = 1 − 1

2

(
x − π

2

)2
.

3. f (x) = 1

1 + x
, a = 2

solution First, we calculate and evaluate the needed derivatives:

f (x) = 1

1 + x
f (a) = 1

3

f ′(x) = −1

(1 + x)2
f ′(a) = −1

9

f ′′(x) = 2

(1 + x)3
f ′′(a) = 2

27

f ′′′(x) = −6

(1 + x)4
f ′′′(a) = − 2

27

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 1

3
− 1

9
(x − 2) + 2/27

2! (x − 2)2

= 1

3
− 1

9
(x − 2) + 1

27
(x − 2)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 1

3
− 1

9
(x − 2) + 2/27

2! (x − 2)2 − 2/27

3! (x − 2)3 = 1

3
− 1

9
(x − 2) + 1

27
(x − 2)2 − 1

81
(x − 2)3

4. f (x) = 1

1 + x2
, a = −1

solution First, we calculate and evaluate the needed derivatives:

f (x) = 1

1 + x2
f (a) = 1/2

f ′(x) = −2x

(x2 + 1)2
f ′(a) = 1/2

f ′′(x) = 2(3x2 − 1)

(x2 + 1)3
f ′′(a) = 1/2

f ′′′(x) = −24x(x2 − 1)

(x2 + 1)4
f ′′′(a) = 0
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Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 1

2
+ 1

2
(x + 1) + 1/2

2
(x + 1)2 = 1

2
+ 1

2
(x + 1) + 1

4
(x + 1)2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1

2
+ 1

2
(x + 1) + 1/2

2
(x + 1)2 + 0

6
(x + 1)3 = 1

2
+ 1

2
(x + 1) + 1

4
(x + 1)2.

5. f (x) = x4 − 2x, a = 3

solution First calculate and evaluate the needed derivatives:

f (x) = x4 − 2x f (a) = 75

f ′(x) = 4x3 − 2 f ′(a) = 106

f ′′(x) = 12x2 f ′′(a) = 108

f ′′′(x) = 24x f ′′′(a) = 72

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 75 + 106(x − 3) + 108

2
(x − 3)2

= 75 + 106(x − 3) + 54(x − 3)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

3! (x − a)3

= 75 + 106(x − 3) + 108

2
(x − 3)2 + 72

3! (x − 3)3

= 75 + 106(x − 3) + 54(x − 3)2 + 12(x − 3)3

6. f (x) = x2 + 1

x + 1
, a = −2

solution First calculate and evaluate the needed derivatives:

f (x) = x2 + 1

x + 1
f (a) = −5

f ′(x) = x2 + 2x − 1

(x + 1)2
f ′(a) = −1

f ′′(x) = 4

(x + 1)3
f ′′(a) = −4

f ′′′(x) = −12

(x + 1)4
f ′′′(a) = −12

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = −5 − (x + 2) + −4

2
(x + 2)2

= −5 − (x + 2) − 2(x + 2)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= −5 − (x + 2) + −4

2
(x + 2)2 + −12

3! (x + 2)3

= −5 − (x + 2) − 2(x + 2)2 − 2(x + 2)3
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7. f (x) = tan x, a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = tan x f (a) = 0

f ′(x) = sec2 x f ′(a) = 1

f ′′(x) = 2 sec2 x tan x f ′′(a) = 0

f ′′′(x) = 2 sec4 x + 4 sec2 x tan2 x f ′′′(a) = 2

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 0 + 1(x − 0) + 0

2
(x − 0)2 = x; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 0 + 1(x − 0) + 0

2
(x − 0)2 + 2

6
(x − 0)3 = x + 1

3
x3.

8. f (x) = tan x, a = π

4

solution First, we calculate and evaluate the needed derivatives:

f (x) = tan x f (a) = 1

f ′(x) = sec2 x f ′(a) = 2

f ′′(x) = 2 sec2 x tan x f ′′(a) = 4

f ′′′(x) = 2 sec4 x + 4 sec2 x tan2 x f ′′′(a) = 16

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 1 + 2

(
x − π

4

)
+ 4

2

(
x − π

4

)2

= 1 + 2
(
x − π

4

)
+ 2

(
x − π

4

)2 ; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1 + 2
(
x − π

4

)
+ 4

2

(
x − π

4

)2 + 16

6

(
x − π

4

)3 = 1 + 2
(
x − π

4

)
+ 2

(
x − π

4

)2 + 8

3

(
x − π

4

)3
.

9. f (x) = e−x + e−2x , a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = e−x + e−2x f (a) = 2

f ′(x) = −e−x − 2e−2x f ′(a) = −3

f ′′(x) = e−x + 4e−2x f ′′(a) = 5

f ′′′(x) = −e−x − 8e−2x f ′′′(a) = −9

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 2 + (−3)(x − 0) + 5

2
(x − 0)2 = 2 − 3x + 5

2
x2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 2 + (−3)(x − 0) + 5

2
(x − 0)2 + −9

6
(x − 0)3 = 2 − 3x + 5

2
x2 − 3

2
x3.
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10. f (x) = e2x , a = ln 2

solution First calculate and evaluate the needed derivatives:

f (x) = e2x f (a) = 4

f ′(x) = 2e2x f ′(a) = 8

f ′′(x) = 4e2x f ′′(a) = 16

f ′′′(x) = 8e2x f ′′′(a) = 32

Now

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 4 + 8(x − ln 2) + 16

2! (x − ln 2)2

= 4 + 8(x − ln 2) + 8(x − ln 2)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 4 + 8(x − ln 2) + 16

2! (x − ln 2)2 + 32

6
(x − ln 2)3

= 4 + 8(x − ln 2) + 8(x − ln 2)2 + 16

3
(x − ln 2)3

11. f (x) = x2e−x , a = 1

solution First, we calculate and evaluate the needed derivatives:

f (x) = x2e−x f (a) = 1/e

f ′(x) = (2x − x2)e−x f ′(a) = 1/e

f ′′(x) = (x2 − 4x + 2)e−x f ′′(a) = −1/e

f ′′′(x) = (−x2 + 6x − 6)e−x f ′′′(a) = −1/e

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 1

e
+ 1

e
(x − 1) + −1/e

2
(x − 1)2 = 1

e
+ 1

e
(x − 1) − 1

2e
(x − 1)2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1

e
+ 1

e
(x − 1) + −1/e

2
(x − 1)2 +

(−1/e

6

)
(x − 1)3

= 1

e
+ 1

e
(x − 1) − 1

2e
(x − 1)2 − 1

6e
(x − 1)3.

12. f (x) = cosh 2x, a = 0

solution First calculate and evaluate the needed derivatives:

f (x) = cosh 2x f (a) = 1

f ′(x) = 2 sinh 2x f ′(a) = 0

f ′′(x) = 4 cosh 2x f ′′(a) = 4

f ′′′(x) = 8 sinh 2x f ′′′(a) = 0

so that

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 1 + 0(x − 0) + 4

2! (x − 0)2

= 1 + 2x2
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T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 1 + 0(x − 0) + 2(x − 0)2 + 0

3! (x − 0)3

= 1 + 2x2

13. f (x) = ln x

x
, a = 1

solution First calculate and evaluate the needed derivatives:

f (x) = ln x

x
f (a) = 0

f ′(x) = 1 − ln x

x2
f (a) = 1

f ′′(x) = −3 + 2 ln x

x3
f (a) = −3

f ′′′(x) = 11 − 6 ln x

x4
f (a) = 11

so that

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 0 + 1(x − 1) + −3

2! (x − 1)2

= (x − 1) − 3

2
(x − 1)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 0 + 1(x − 1) + −3

2! (x − 1)2 + 11

3! (x − 1)3

= (x − 1) − 3

2
(x − 1)2 + 11

6
(x − 1)3

14. f (x) = ln(x + 1), a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = ln(x + 1) f (a) = 0

f ′(x) = 1

x + 1
f ′(a) = 1

f ′′(x) = −1

(x + 1)2
f ′′(a) = −1

f ′′′(x) = 2

(x + 1)3
f ′′′(a) = 2

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 0 + 1(x − 0) + −1

2
(x − 0)2 = x − 1

2
x2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 0 + 1(x − 0) + −1

2
(x − 0)2 + 2

6
(x − 0)3 = x − 1

2
x2 + 1

3
x3.

15. Show that the nth Maclaurin polynomial for ex is

Tn(x) = 1 + x

1! + x2

2! + · · · + xn

n!
solution With f (x) = ex , it follows that f (n)(x) = ex and f (n)(0) = 1 for all n. Thus,

Tn(x) = 1 + 1(x − 0) + 1

2
(x − 0)2 + · · · + 1

n! (x − 0)n = 1 + x + x2

2
+ · · · + xn

n! .
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16. Show that the nth Taylor polynomial for
1

x + 1
at a = 1 is

Tn(x) = 1

2
− (x − 1)

4
+ (x − 1)2

8
+ · · · + (−1)n

(x − 1)n

2n+1

solution Let f (x) = 1
x+1 . Then

f (x) = 1

x + 1
f (1) = 1

2
= (−1)00!

20+1

f ′(x) = −1

(x + 1)2
f ′(1) = −1

4
= (−1)11!

21+1

f ′′(x) = 2

(x + 1)3
f ′′(1) = 1

4
= (−1)22!

22+1

...
...

f (n)(x) = (−1)nn!
(x + 1)n+1

f (n)(1) = (−1)nn!
2n+1

Therefore,

Tn(x) = 1

2
+
(

−1

4

)
(x − 1) + 1

4

(x − 1)2

2! + · · · + (−1)nn!
2n+1

(x − 1)n

n!

= 1

2
− 1

4
(x − 1) + (x − 1)2

8
+ · · · + (−1)n

(x − 1)n

2n+1
.

17. Show that the Maclaurin polynomials for sin x are

T2n+1(x) = T2n+2(x) = x − x3

3! + x5

5! − · · · + (−1)n
x2n+1

(2n + 1)!
solution Let f (x) = sin x. Then

f (x) = sin x f (0) = 0

f ′(x) = cos x f ′(0) = 1

f ′′(x) = − sin x f ′′(0) = 0

f ′′′(x) = − cos x f ′′′(0) = −1

f (4)(x) = sin x f (4)(0) = 0

f (5)(x) = cos x f (5)(0) = 1

...
...

Consequently,

T2n+1(x) = x − x3

3! + x5

5! + · · · + (−1)n
x2n+1

(2n + 1)!
and

T2n+2(x) = x − x3

3! + x5

5! + · · · + (−1)n
x2n+1

(2n + 1)! + 0 = T2n+1(x).

18. Show that the Maclaurin polynomials for ln(1 + x) are

Tn(x) = x − x2

2
+ x3

3
+ · · · + (−1)n−1 xn

n

solution Let f (x) = ln(1 + x). Then

f (x) = ln(1 + x) f (0) = 0

f ′(x) = (1 + x)−1 f ′(0) = 1
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f ′′(x) = −(1 + x)−2 f ′′(0) = −1

f ′′′(x) = 2(1 + x)−3 f ′′′(0) = 2

f (4)(x) = −3!(1 + x)−4 f (4)(0) = −6

f (5)(x) = 4!(1 + x)−5 f (5)(0) = 24

so that in general

f (n)(x) = (−1)n−1(n − 1)!(1 + x)−n f (n)(0) = (−1)n−1(n − 1)!
Thus

Tn(x) = x − 1

2!x
2 + 2

3!x
3 − · · · + (−1)n−1(n − 1)!

n! xn = x − x2

2
+ x3

3
+ · · · + (−1)n−1 xn

n

In Exercises 19–24, find Tn(x) at x = a for all n.

19. f (x) = 1

1 + x
, a = 0

solution We have

1

1 + x
= (ln(1 + x))′

so that from Exercise 18, letting g(x) = ln(1 + x),

f (n)(x) = g(n+1)(x) = (−1)nn!(x + 1)−1−n and f (n)(0) = (−1)nn!
Then

Tn(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn

= 1 − x + 2!
2!x

2 − 3!
3!x

3 + · · · + (−1)n
n!
n!x

n

= 1 − x + x2 − x3 + · · · + (−1)nxn

20. f (x) = 1

x − 1
, a = 4

solution Let f (x) = 1
x−1 . Then

f (x) = 1

x − 1
f (4) = 1

3
= (−1)00!

30+1

f ′(x) = −1

(x − 1)2
f ′(4) = −1

9
= (−1)11!

31+1

f ′′(x) = 2

(x − 1)3
f ′′(4) = 2

27
= (−1)22!

32+1

...
...

f (n)(x) = (−1)nn!
(x − 1)n+1

f (n)(4) = (−1)nn!
3n+1

Therefore,

Tn(x) = 1

3
+
(

−1

9

)
(x − 4) + 2/27

2
(x − 4)2 + · · · + (−1)nn!

3n+1

(x − 4)n

n!

= 1

3
− 1

9
(x − 4) + 1

27
(x − 4)2 + · · · + (−1)n

3n+1
(x − 4)n.

21. f (x) = ex , a = 1

solution Let f (x) = ex . Then f (n)(x) = ex and f (n)(1) = e for all n. Therefore,

Tn(x) = e + e(x − 1) + e

2! (x − 1)2 + · · · + e

n! (x − 1)n.



March 30, 2011

S E C T I O N 8.4 Taylor Polynomials 1067

22. f (x) = x−2, a = 2

solution We have

f (x) = x−2 f (2) = 1

4

f ′(x) = −2x−3 f ′(2) = −1

4

f ′′(x) = 6x−4 f ′′(2) = 3

8

f ′′′(x) = −24x−5 f ′′′(2) = −3

4

...
...

f (n)(x) = (−1)n(n + 1)!x−n−2 f (n)(2) = (−1)n
(n + 1)!

2n+2

so that

Tn(x) = f (2) + f ′(2)(x − 2) + f ′′(2)

2! (x − 2)2 + · · · + f (n)(2)

n! (x − 2)n

= 1

4
− 1

4
(x − 2) + 3

16
(x − 2)2 + · · · + (−1)n

n + 1

2n+2
(x − 2)n

23. f (x) = cos x, a = π

4
solution Let f (x) = cos x. Then

f (x) = cos x f (π/4) = 1√
2

f ′(x) = − sin x f ′(π/4) = − 1√
2

f ′′(x) = − cos x f ′′(π/4) = − 1√
2

f ′′′(x) = sin x f ′′′(π/4) = 1√
2

This pattern of four values repeats indefinitely. Thus,

f (n)(π/4) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)(n+1)/2 1√
2
, n odd

(−1)n/2 1√
2
, n even

and

Tn(x) = 1√
2

− 1√
2

(
x − π

4

)
− 1

2
√

2

(
x − π

4

)2 + 1

6
√

2

(
x − π

4

)3 · · ·.

In general, the coefficient of (x − π/4)n is

± 1

(
√

2)n!
with the pattern of signs +, −, −, +, +, −, −, . . . .

24. f (θ) = sin 3θ , a = 0

solution We have

f (θ) = sin 3θ f (0) = 0

f ′(θ) = 3 cos 3θ f ′(0) = 3

f ′′(θ) = −9 sin 3θ f ′′(0) = 0

f ′′′(θ) = −27 cos 3θ f ′′′(0) = −27

f (4)(θ) = 81 sin 3θ f (4)(0) = 0



March 30, 2011

1068 C H A P T E R 8 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

and in general

f (2n)(θ) = (−1)n32n sin 3θ f (2n)(0) = 0

f (2n+1)(θ) = (−1)n32n+1 cos 3θ f (2n+1)(0) = (−1)n32n+1

Thus

Tn(x) = 3θ − 27

3! θ3 + 243

5! θ5 − . . .

where the coefficient of θ2n+1 is (−1)n 32n+1

(2n+1)! .

In Exercises 25–28, find T2(x) and use a calculator to compute the error |f (x) − T2(x)| for the given values of a and x.

25. y = ex , a = 0, x = −0.5

solution Let f (x) = ex . Then f ′(x) = ex , f ′′(x) = ex , f (a) = 1, f ′(a) = 1 and f ′′(a) = 1. Therefore

T2(x) = 1 + 1(x − 0) + 1

2
(x − 0)2 = 1 + x + 1

2
x2,

and

T2(−0.5) = 1 + (−0.5) + 1

2
(−0.5)2 = 0.625.

Using a calculator, we find

f (−0.5) = 1√
e

= 0.606531,

so

|T2(−0.5) − f (−0.5)| = 0.0185.

26. y = cos x, a = 0, x = π

12
solution Let f (x) = cos x. Then f ′(x) = − sin x, f ′′(x) = − cos x, f (a) = 1, f ′(a) = 0, and f ′′(a) = −1.
Therefore

T2(x) = 1 + 0(x − 0) + −1

2
(x − 0)2 = 1 − 1

2
x2,

and

T2

( π

12

)
= 1 − 1

2

( π

12

)2 ≈ 0.965731.

Using a calculator, we find

f
( π

12

)
= 0.965926,

so ∣∣∣T2

( π

12

)
− f

( π

12

)∣∣∣ = 0.000195.

27. y = x−2/3, a = 1, x = 1.2

solution Let f (x) = x−2/3. Then f ′(x) = − 2
3x−5/3, f ′′(x) = 10

9 x−8/3, f (1) = 1, f ′(1) = − 2
3 , and f ′′(1) = 10

9 .
Thus

T2(x) = 1 − 2

3
(x − 1) + 10

2 · 9
(x − 1)2 = 1 − 2

3
(x − 1) + 5

9
(x − 1)2

and

T2(1.2) = 1 − 2

3
(0.2) + 5

9
(0.2)2 = 8

9
≈ 0.88889

Using a calculator, f (1.2) = (1.2)−2/3 ≈ 0.88555 so that

|T2(1.2) − f (1.2)| ≈ 0.00334

28. y = esin x , a = π

2
, x = 1.5

solution Let f (x) = esin x . Then f ′(x) = cos xesin x , f ′′(x) = cos2 xesin x − sin xesin x , f (a) = e, f ′(a) = 0 and
f ′′(a) = −e. Therefore

T2(x) = e + 0
(
x − π

2

)
+ −e

2

(
x − π

2

)2 = e − e

2

(
x − π

2

)2
,
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and

T2(1.5) = e − e

2

(
1.5 − π

2

)2 ≈ 2.711469651.

Using a calculator, we find f (1.5) = 2.711481018, so

|T2(1.5) − f (1.5)| = 1.14 × 10−5.

29. Compute T3(x) for f (x) = √
x centered at a = 1. Then use a plot of the error |f (x) − T3(x)| to find a value

c > 1 such that the error on the interval [1, c] is at most 0.25.

solution We have

f (x) = x1/2 f (1) = 1

f ′(x) = 1

2
x−1/2 f ′(1) = 1

2

f ′′(x) = −1

4
x−3/2 f ′′(1) = −1

4

f ′′′(x) = 3

8
x−5/2 f ′′′(1) = 3

8

Therefore

T3(x) = 1 + 1

2
(x − 1) − 1

4 · 2! (x − 1)2 + 3

8 · 3! (x − 1)3 = 1 + 1

2
(x − 1) − 1

8
(x − 1)2 + 1

16
(x − 1)3

A plot of |f (x) − T3(x)| is below.

1.0 1.5 2.0 2.5 3.0

0.05

0.10

0.15

0.20

0.25

y

x

It appears that for x ∈ [1, 2.9] that the error does not exceed 0.25. The error at x = 3 appears to just exceed 0.25.

30. Plot f (x) = 1/(1 + x) together with the Taylor polynomials Tn(x) at a = 1 for 1 ≤ n ≤ 4 on the interval
[−2, 8] (be sure to limit the upper plot range).

(a) Over which interval does T4(x) appear to approximate f (x) closely?

(b) What happens for x < −1?

(c) Use your computer algebra system to produce and plot T30 together with f (x) on [−2, 8]. Over which interval does
T30 appear to give a close approximation?

solution Let f (x) = 1
1+x

. Then

f (x) = 1

1 + x
f (1) = 1

2

f ′(x) = − 1

(1 + x)2
f ′(1) = −1

4

f ′′(x) = 2

(1 + x)3
f ′′(1) = 1

4

f ′′′(x) = − 6

(1 + x)4
f ′′′(1) = −3

8

f (4)(x) = 24

(1 + x)5 f (4)(1) = 3

4
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and

T1(x) = 1

2
− 1

4
(x − 1);

T2(x) = 1

2
− 1

4
(x − 1) + 1

8
(x − 1)2;

T3(x) = 1

2
− 1

4
(x − 1) + 1

8
(x − 1)2 − 1

16
(x − 1)3; and

T4(x) = 1

2
− 1

4
(x − 1) + 1

8
(x − 1)2 − 1

16
(x − 1)3 + 1

32
(x − 1)4.

A plot of f (x), T1(x), T2(x), T3(x) and T4(x) is shown below.

y

2

1.5

1

0.5

−2 2 4 6 8
x

T1

T2

T3

T4

(a) The graph below displays f (x) and T4(x) over the interval [−0.5, 2.5]. It appears that T4(x) gives a close approxi-
mation to f (x) over the interval (0.1, 2).

y

0.5 1 1.5 2
x

1.2

1

0.8

0.6

0.4

0.2

(b) For x < −1, f (x) is negative, but the Taylor polynomials are positive; thus, the Taylor polynomials are poor
approximations for x < −1.

(c) The graph below displays f (x) and T30(x) over the interval [−2, 8]. It appears that T30(x) gives a close approximation
to f (x) over the interval (−1, 3).

y

10

8

6

4

2

−2 2 4 6 8
x

31. Let T3(x) be the Maclaurin polynomial of f (x) = ex . Use the error bound to find the maximum possible value of
|f (1.1) − T3(1.1)|. Show that we can take K = e1.1.

solution Since f (x) = ex , we have f (n)(x) = ex for all n; since ex is increasing, the maximum value of ex on the

interval [0, 1.1] is K = e1.1. Then by the error bound,

∣∣∣e1.1 − T3(1.1)

∣∣∣ ≤ K
(1.1 − 0)4

4! = e1.11.14

24
≈ 0.183
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32. Let T2(x) be the Taylor polynomial of f (x) = √
x at a = 4. Apply the error bound to find the maximum possible

value of the error |f (3.9) − T2(3.9)|.
solution We have f (x) = x1/2, f ′(x) = 1

2x−1/2, f ′′(x) = − 1
4x−3/2, and f ′′′(x) = 3

8x−5/2. This is a decreasing

function of x, so its maximum value on [3.9, 4] is achieved at x = 3.9; that value is 3
8·3.95/2 ≈ 0.0125, so we can take

K = 0.0125. Then

|f (x) − T2(x)| ≤ K
|3.9 − 4|3

3! = 0.0125
0.001

6
≈ 2.08 × 10−6

In Exercises 33–36, compute the Taylor polynomial indicated and use the error bound to find the maximum possible size
of the error. Verify your result with a calculator.

33. f (x) = cos x, a = 0; |cos 0.25 − T5(0.25)|
solution The Maclaurin series for cos x is

1 − x2

2! + x4

4! − x6

6! + . . .

so that

T5(x) = 1 − x2

2
+ x4

24

T5(0.25) ≈ 0.9689127604

In addition, f (6)(x) = − cos x so that |f (6)(x)| ≤ 1 and we may take K = 1 in the error bound formula. Then

|cos 0.25 − T5(0.25)| ≤ K
0.256

6! = 1

212 · 6! ≈ 3.390842014 · 10−7

(The true value is cos 0.25 ≈ 0.9689124217 and the difference is in fact ≈ 3.387 · 10−7.)

34. f (x) = x11/2, a = 1; |f (1.2) − T4(1.2)|
solution Let f (x) = x11/2. Then

f (x) = x11/2 f (1) = 1

f ′(x) = 11

2
x9/2 f ′(1) = 11

2

f ′′(x) = 99

4
x7/2 f ′′(1) = 99

4

f ′′′(x) = 693

8
x5/2 f ′′′(1) = 693

8

f (4)(x) = 3465

16
x3/2 f (4)(1) = 3465

16

and

T4(x) = 1 + 11

2
(x − 1) + 99

8
(x − 1)2 + 231

16
(x − 1)3 + 1155

128
(x − 1)4.

Using the Error Bound,

|f (1.2) − T4(1.2)| ≤ K|1.2 − 1|5
5! = K

375,000
,

where K is a number such that |f (5)(x)| ≤ K for x between 1 and 1.2. Now,

f (5)(x) = 10,395

32
x1/2,

which is increasing for x > 1. Consequently, on the interval [1, 1.2], f (5)(x) is maximized at x = 1.2. We can therefore
take K = 10,395

32

√
1.2, and then

|f (1.2) − T4(1.2)| ≤ 10,395

(32)(375,000)

√
1.2 ≈ 9.489 × 10−4.
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35. f (x) = x−1/2, a = 4; |f (4.3) − T3(4.3)|
solution We have

f (x) = x−1/2 f (4) = 1

2

f ′(x) = −1

2
x−3/2 f ′(4) = − 1

16

f ′′(x) = 3

4
x−5/2 f ′′(4) = 3

128

f ′′′(x) = −15

8
x−7/2 f ′′′(4) = − 15

1024

f (4)(x) = 105

16
x−9/2

so that

T3(x) = 1

2
− 1

16
(x − 4) + 3

256
(x − 4)2 − 5

2048
(x − 4)3

Using the error bound formula,

|f (4.3) − T3(4.3)| ≤ K
|4.3 − 4|4

4! = 27K

80,000

where K is a number such that |f (4)(x)| ≤ K for x between 4 and 4.3. Now, f (4)(x) is a decreasing function for x > 1,
so it takes its maximum value on [4, 4.3] at x = 4; there, its value is

K = 105

16
4−9/2 = 105

8192

so that

|f (4.3) − T3(4.3)| ≤ 27 105
8192

80,000
= 27 · 105

8192 · 80,000
≈ 4.3258667 · 10−6

36. f (x) = √
1 + x, a = 8; |√9.02 − T3(8.02)|

solution Let f (x) = √
1 + x. Then

f (x) = √
1 + x f (8) = 3

f ′(x) = 1

2
(x + 1)−1/2 f ′(8) = 1

6

f ′′(x) = −1

4
(x + 1)−3/2 f ′′(8) = −1

108

f ′′′(x) = 3

8
(x + 1)−5/2 f ′′′(8) = 1

648

and

T3(x) = 3 + 1

6
(x − 8) − 1

108 · 2! (x − 8)2 + 1

648 · 3! (x − 8)3 = 3 + 1

6
(x − 8) − 1

216
(x − 8)2 + 1

3888
(x − 8)3.

Therefore

T3(8.02) = 3 + 1

6
(0.02) − 1

216
(0.02)2 + 1

3888
(0.02)3 = 3.003331484.

Using the Error Bound, we have

|√9.02 − T3(8.02)| ≤ K
|8.02 − 8|4

4! = K

150,000,000
,

where K is a number such that |f (4)(x)| ≤ K for x between 8 and 8.02. Now

f (4)(x) = −15

16
(1 + x)−7/2,

which is a decreasing function for 8 ≤ x ≤ 8.02, so we may take

K = 15

16
9−7/2 = 15

34992
.
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Thus,

|√9.02 − T3(8.02)| ≤ 15/34992

150,000,000
≈ 2.858 × 10−12.

37. Calculate the Maclaurin polynomial T3(x) for f (x) = tan−1 x. Compute T3
( 1

2

)
and use the error bound to find a

bound for the error
∣∣ tan−1 1

2 − T3
( 1

2

)∣∣. Refer to the graph in Figure 10 to find an acceptable value of K . Verify your

result by computing
∣∣ tan−1 1

2 − T3
( 1

2

)∣∣ using a calculator.

y

x
21 3

−1

1

2

3

4

5

FIGURE 10 Graph of f (4)(x) = −24x(x2 − 1)

(x2 + 1)4
, where f (x) = tan−1 x.

solution Let f (x) = tan−1 x. Then

f (x) = tan−1 x f (0) = 0

f ′(x) = 1

1 + x2
f ′(0) = 1

f ′′(x) = −2x

(1 + x2)2
f ′′(0) = 0

f ′′′(x) = (1 + x2)2(−2) − (−2x)(2)(1 + x2)(2x)

(1 + x2)4
f ′′′(0) = −2

and

T3(x) = 0 + 1(x − 0) + 0

2
(x − 0)2 + −2

6
(x − 0)3 = x − x3

3
.

Since f (4)(x) ≤ 5 for x ≥ 0, we may take K = 5 in the error bound; then,∣∣∣∣tan−1
(

1

2

)
− T3

(
1

2

)∣∣∣∣ ≤ 5(1/2)4

4! = 5

384
.

38. Let f (x) = ln(x3 − x + 1). The third Taylor polynomial at a = 1 is

T3(x) = 2(x − 1) + (x − 1)2 − 7

3
(x − 1)3

Find the maximum possible value of |f (1.1) − T3(1.1)|, using the graph in Figure 11 to find an acceptable value of K .
Verify your result by computing |f (1.1) − T3(1.1)| using a calculator.

20

40
41

x

y

1.21.11.00.9

FIGURE 11 Graph of f (4)(x), where f (x) = ln(x3 − x + 1).

solution The maximum value of f (4)(x) on [1.0, 1.1] is less than 41, so we may take K = 41. Then

|f (1.1) − T3(1.1)| ≤ K
|1.1 − 1|4

4! = 41

24 · 10,000
≈ 0.00017083
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In fact, we have

f (1.1) = ln(1.13 − 1.1 + 1) = ln(1.231) ≈ 0.2078268472

T3(1.1) = 2(1.1 − 1) + (1.1 − 1)2 − 7

3
(1.1 − 1)3 ≈ 0.2076666667

|f (1.1) − T3(1.1)| ≈ 0.2078268472 − 0.2076666667 = 0.0001601805

which is in accordance with the error bound above.

39. Calculate the T3(x) at a = 0.5 for f (x) = cos(x2), and use the error bound to find the maximum possible

value of |f (0.6) − T3(0.6)|. Plot f (4)(x) to find an acceptable value of K .

solution We have

f (x) = cos(x2) f (0.5) = cos(0.25) ≈ 0.9689

f ′(x) = −2x sin(x2) f ′(0.5) = − sin(0.25) ≈ −0.2474039593

f ′′(x) = −4x2 cos(x2) − 2 sin(x2) f ′′(0.5) = − cos(0.25) − 2 sin(0.25) ≈ −1.463720340

f ′′′(x) = 8x3 sin(x2) − 12x cos(x2) f ′′′(0.5) = sin(0.25) − 6 cos(0.25) ≈ −5.566070571

f (4)(x) = 16x4 cos(x2) + 48x2 sin(x2) − 12 cos(x2)

so that

T3(x) = 0.9689 − 0.2472039593(x − 0.5) − 0.73186017(x − 0.5)2 − 0.92767843(x − 0.5)3

and T3(0.6) ≈ 0.9359257453. A graph of f (4)(x) for x near 0.5 is below.

−8

−7

−6

−5

−4

−3
0.4 0.5 0.6 0.7

y

x

Clearly the maximum value of |f (4)(x)| on [0.5, 0.6] is bounded by 8 (near x = 0.5), so we may take K = 8; then

|f (0.6) − T3(0.6)| ≤ K
|0.6 − 0.5|4

4! = 8

240,000
≈ 0.000033333

40. Calculate the Maclaurin polynomial T2(x) for f (x) = sech x and use the error bound to find the maximum

possible value of
∣∣f ( 1

2

)− T2
( 1

2

)∣∣. Plot f ′′′(x) to find an acceptable value of K .

solution To compute T2(x) for f (x) = sech x, we take the first two derivatives:

f (x) = sech x f (0) = 1

f ′(x) = − sech x tanh x f ′(0) = 0

f ′′(x) = sech x tanh2 x − sech3 x f ′′(0) = −1

From this,

T2(x) = 1 − 1

2
x2,

and

T2

(
1

2

)
= 1 − 1

2

(
1

2

)2
= 1 − 1

8
= 7

8
.

Using the Error Bound, we have

∣∣∣∣f
(

1

2

)
− T2

(
1

2

)∣∣∣∣ ≤ K
|1/2|3

6
= K

48
,
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where K is a number such that |f ′′′(x)| ≤ K| for x between 0 and 1
2 . Here,

f ′′′(x) = − sech x tanh3 x + 2 sech3 x tanh x + 3 sech2 x(sech x tanh x)

= 5 sech2 x tanh x − sech x tanh3 x.

A plot of f ′′′(x) is given below. From the plot, we see that |f ′′′(x)| ≤ 2 for all x between 0 and 1/2. Thus,∣∣∣∣f
(

1

2

)
− T2

(
1

2

)∣∣∣∣ ≤ 2

48
= 1

24
.

x

y

0.1 0.2 0.3 0.4 0.50

2

1.5

1

0.5

In Exercises 41–44, use the error bound to find a value of n for which the given inequality is satisfied. Then verify your
result using a calculator.

41. | cos 0.1 − Tn(0.1)| ≤ 10−7, a = 0

solution Using the error bound with K = 1 (every derivative of f (x) = cos x is ± sin x or ± cos x, so |f (n)(x)| ≤ 1
for all n), we have

|Tn(0.1) − cos 0.1| ≤ (0.1)n+1

(n + 1)! .

With n = 3,

(0.1)4

4! ≈ 4.17 × 10−6 > 10−7,

but with n = 4,

(0.1)5

5! ≈ 8.33 × 10−8 < 10−7,

so we choose n = 4. Now,

T4(x) = 1 − 1

2
x2 + 1

24
x4,

so

T4(0.1) = 1 − 1

2
(0.1)2 + 1

24
(0.1)4 = 0.995004166.

Using a calculator, cos 0.1 = 0.995004165, so

|T4(0.1) − cos 0.1| = 1.387 × 10−8 < 10−7.

42. | ln 1.3 − Tn(1.3)| ≤ 10−4, a = 1

solution Let f (x) = ln x. Then f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4, etc. In general,

f (n)(x) = (−1)n+1(n − 1)!x−n.

Now, |f (n+1)(x)| is decreasing on the interval [1, 1.3], so |f (n+1)(x)| ≤ |f (n+1)(1)| = n! for all x ∈ [1, 1.3]. We can
therefore take K = n! in the error bound, and

| ln 1.3 − Tn(1.3)| ≤ n! |1.3 − 1|n+1

(n + 1)! = (0.3)n+1

n + 1
.

With n = 5,

(0.3)6

6
= 1.215 × 10−4 > 10−4,
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but with n = 6,

(0.3)7

7
= 3.124 × 10−5 < 10−4.

Therefore, the error is guaranteed to be below 10−4 for n = 6. Now,

T6(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − 1

4
(x − 1)4 + 1

5
(x − 1)5 − 1

6
(x − 1)6

and T6(1.3) ≈ 0.2623395000. Using a calculator, ln(1.3) ≈ 0.2623642645; the difference is

ln(1.3) − T6(1.3) ≈ 0.0000247645 < 10−4

43. |√1.3 − Tn(1.3)| ≤ 10−6, a = 1

solution Using the Error Bound, we have

|√1.3 − Tn(1.3)| ≤ K
|1.3 − 1|n+1

(n + 1)! = K
|0.3|n+1

(n + 1)! ,

where K is a number such that |f (n+1)(x)| ≤ K for x between 1 and 1.3. For f (x) = √
x, |f (n)(x)| is decreasing for

x > 1, hence the maximum value of |f (n+1)(x)| occurs at x = 1. We may therefore take

K = |f (n+1)(1)| = 1 · 3 · 5 · · · (2n + 1)

2n+1

= 1 · 3 · 5 · · · (2n + 1)

2n+1
· 2 · 4 · 6 · · · (2n + 2)

2 · 4 · 6 · · · (2n + 2)
= (2n + 2)!

(n + 1)!22n+2
.

Then

|√1.3 − Tn(1.3)| ≤ (2n + 2)!
(n + 1)!22n+2

· |0.3|n+1

(n + 1)! = (2n + 2)!
[(n + 1)!]2 (0.075)n+1.

With n = 9

(20)!
[(10)!]2 (0.075)10 = 1.040 × 10−6 > 10−6,

but with n = 10

(22)!
[(11)!]2 (0.075)11 = 2.979 × 10−7 < 10−6.

Hence, n = 10 will guarantee the desired accuracy. Using technology to compute and evaluate T10(1.3) gives

T10(1.3) ≈ 1.140175414,
√

1.3 ≈ 1.140175425

and

|√1.3 − T10(1.3)| ≈ 1.1 × 10−8 < 10−6

44. |e−0.1 − Tn(−0.1)| ≤ 10−6, a = 0

solution Using the Error Bound, we have

|e−0.1 − Tn(−0.1)| ≤ K
|−0.1 − 0|n+1

(n + 1)! = K
1

10n+1(n + 1)!
where K is a number such that |f (n+1)(x)| ≤ K for x between −0.1 and 0. Since f (x) = ex , f (n)(x) = ex for all n;
this is an increasing function, so it takes its maximum value at x = 0; this value is 1. So we may take K = 1 and then

|e−0.1 − Tn(−0.1)| ≤ 1

10n+1(n + 1)!
With n = 3

1

104 · 24
= 1

240,000
≈ 4.166666667 × 10−6 > 10−6

but with n = 4

1

105 · 120
= 1

12,000,000
≈ 8.333333333 × 10−8 < 10−6
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Thus n = 4 will guarantee the desired accuracy. Using technology to compute T4(x) and evalute,

T4(−0.1) ≈ 0.9048375000, e−0.1 ≈ 0.9048374180

and

|e−0.1 − T4(−0.1)| ≈ 8.2 × 10−8 < 10−6

45. Let f (x) = e−x and T3(x) = 1 − x + x2

2
− x3

6
. Use the error bound to show that for all x ≥ 0,

|f (x) − T3(x)| ≤ x4

24

If you have a GU, illustrate this inequality by plotting f (x) − T3(x) and x4/24 together over [0, 1].
solution Note that f (n)(x) = ±e−x , so that |f (n)(x)| = f (x). Now, f (x) is a decreasing function for x ≥ 0, so that

for any c > 0, |f (n)(x)| takes its maximum value at x = 0; this value is e0 = 1. Thus we may take K = 1 in the error
bound equation. Thus for any x,

|f (x) − T3(x)| ≤ K
|x − 0|4

4! = x4

24

A plot of f (x) − T3(x) and x4

24 is shown below.

2

1 2 3 4 5 6 7

4

6

8

10

1
24

y

x4

x

e−x − T3(x)

46. Use the error bound with n = 4 to show that∣∣∣∣∣sin x −
(

x − x3

6

)∣∣∣∣∣ ≤ |x|5
120

(for all x)

solution Note that all derivatives of sin x are either ± cos x or ± sin x so are bounded in absolute value by 1. Thus
we may take K = 1 in the Error Bound. Now,

T4(x) = x − x3

3!
so that

|sin x − T4(x)| =
∣∣∣∣∣sin x −

(
x − x3

6

)∣∣∣∣∣ ≤ K
|x − 0|5

5! = |x|5
120

47. Let Tn(x) be the Taylor polynomial for f (x) = ln x at a = 1, and let c > 1. Show that

| ln c − Tn(c)| ≤ |c − 1|n+1

n + 1

Then find a value of n such that | ln 1.5 − Tn(1.5)| ≤ 10−2.

solution With f (x) = ln x, we have

f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4,

and, in general,

f (k+1)(x) = (−1)kk! x−k−1.
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Notice that |f (k+1)(x)| = k!|x|−k−1 is a decreasing function for x > 0. Therefore, the maximum value of |f (k+1)(x)|
on [1, c] is |f (k+1)(1)|. Using the Error Bound, we have

|ln c − Tn(c)| ≤ K
|c − 1|n+1

(n + 1)! ,

where K is a number such that |f (n+1)(x)| ≤ K for x between 1 and c. From part (a), we know that we may take
K = |f (n+1)(1)| = n!. Then

|ln c − Tn(c)| ≤ n! |c − 1|n+1

(n + 1)! = |c − 1|n+1

n + 1
.

Evaluating at c = 1.5 gives

|ln 1.5 − Tn(1.5)| ≤ |1.5 − 1|n+1

n + 1
= (0.5)n+1

n + 1
.

With n = 3,

(0.5)4

4
= 0.015625 > 10−2.

but with n = 4,

(0.5)5

5
= 0.00625 < 10−2.

Hence, n = 4 will guarantee the desired accuracy.

48. Let n ≥ 1. Show that if |x| is small, then

(x + 1)1/n ≈ 1 + x

n
+ 1 − n

2n2
x2

Use this approximation with n = 6 to estimate 1.51/6.

solution Let f (x) = (x + 1)1/n. Then

f (x) = (x + 1)1/n f (0) = 1

f ′(x) = 1

n
(x + 1)1/n−1 f ′(0) = 1

n

f ′′(x) = 1

n

(
1

n
− 1

)
(x + 1)1/n−2 f ′′(0) = 1

n

(
1

n
− 1

)

and

T2(x) = 1 + 1

n
(x) +

(
1

n2
− 1

n

)
x2

2
= 1 + x

n
+
(

1 − n

2n2

)
x2.

With n = 6 and x = 0.5,

1.51/6 ≈ T2(0.5) = 307

288
≈ 1.065972.

49. Verify that the third Maclaurin polynomial for f (x) = ex sin x is equal to the product of the third Maclaurin
polynomials of ex and sin x (after discarding terms of degree greater than 3 in the product).

solution Let f (x) = ex sin x. Then

f (x) = ex sin x f (0) = 0

f ′(x) = ex(cos x + sin x) f ′(0) = 1

f ′′(x) = 2ex cos x f ′′(0) = 2

f ′′′(x) = 2ex(cos x − sin x) f ′′′(0) = 2

and

T3(x) = 0 + (1)x + 2

2!x
2 + 2

3!x
3 = x + x2 + x3

3
.
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Now, the third Maclaurin polynomial for ex is 1 + x + x2

2 + x3

6 , and the third Maclaurin polynomial for sin x is x − x3

6 .
Multiplying these two polynomials, and then discarding terms of degree greater than 3, yields

ex sin x ≈ x + x2 + x3

3
,

which agrees with the Maclaurin polynomial obtained from the definition.

50. Find the fourth Maclaurin polynomial for f (x) = sin x cos x by multiplying the fourth Maclaurin polynomials for
f (x) = sin x and f (x) = cos x.

solution The fourth Maclaurin polynomial for sin x is x − x3

6 , and the fourth Maclaurin polynomial for cos x is

1 − x2

2 + x4

24 . Multiplying these two polynomials, and then discarding terms of degree greater than 4, we find that the
fourth Maclaurin polynomial for f (x) = sin x cos x is

T4(x) = x − 2x3

3
.

51. Find the Maclaurin polynomials Tn(x) for f (x) = cos(x2). You may use the fact that Tn(x) is equal to the sum of
the terms up to degree n obtained by substituting x2 for x in the nth Maclaurin polynomial of cos x.

solution The Maclaurin polynomials for cos x are of the form

T2n(x) = 1 − x2

2
+ x4

4! + · · · + (−1)n
x2n

(2n)! .

Accordingly, the Maclaurin polynomials for cos(x2) are of the form

T4n(x) = 1 − x4

2
+ x8

4! + · · · + (−1)n
x4n

(2n)! .

52. Find the Maclaurin polynomials of 1/(1 + x2) by substituting −x2 for x in the Maclaurin polynomials of 1/(1 − x).

solution The Maclaurin polynomials for 1
1−x

are of the form

Tn(x) = 1 + x + x2 + · · · + xn.

Accordingly, the Maclaurin polynomials for 1
1+x2 are of the form

T2n(x) = 1 − x2 + x4 − x6 + · · · + (−x2)n.

53. Let f (x) = 3x3 + 2x2 − x − 4. Calculate Tj (x) for j = 1, 2, 3, 4, 5 at both a = 0 and a = 1. Show that
T3(x) = f (x) in both cases.

solution Let f (x) = 3x3 + 2x2 − x − 4. Then

f (x) = 3x3 + 2x2 − x − 4 f (0) = −4 f (1) = 0

f ′(x) = 9x2 + 4x − 1 f ′(0) = −1 f ′(1) = 12

f ′′(x) = 18x + 4 f ′′(0) = 4 f ′′(1) = 22

f ′′′(x) = 18 f ′′′(0) = 18 f ′′′(1) = 18

f (4)(x) = 0 f (4)(0) = 0 f (4)(1) = 0

f (5)(x) = 0 f (5)(0) = 0 f (5)(1) = 0

At a = 0,

T1(x) = −4 − x;
T2(x) = −4 − x + 2x2;
T3(x) = −4 − x + 2x2 + 3x3 = f (x);
T4(x) = T3(x); and

T5(x) = T3(x).
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At a = 1,

T1(x) = 12(x − 1);
T2(x) = 12(x − 1) + 11(x − 1)2;
T3(x) = 12(x − 1) + 11(x − 1)2 + 3(x − 1)3 = −4 − x + 2x2 + 3x3 = f (x);
T4(x) = T3(x); and

T5(x) = T3(x).

54. Let Tn(x) be the nth Taylor polynomial at x = a for a polynomial f (x) of degree n. Based on the result of Exercise
53, guess the value of |f (x) − Tn(x)|. Prove that your guess is correct using the error bound.

solution Based on Exercise 53, we expect |f (x) − Tn(x)| = 0. From the Error Bound,

|f (x) − Tn(x)| ≤ K
|x − a|n+1

(n + 1)! ,

where K is a number such that |f (n+1)(u)| ≤ K for u between a and x. Since f (n+1)(x) = 0 for an nth degree
polynomial, we may take K = 0; the Error Bound then becomes |f (x) − Tn(x)| = 0.

55. Let s(t) be the distance of a truck to an intersection. At time t = 0, the truck is 60 meters from the intersection, is
traveling at a velocity of 24 m/s, and begins to slow down with an acceleration of a = −3 m/s2. Determine the second
Maclaurin polynomial of s(t), and use it to estimate the truck’s distance from the intersection after 4 s.

solution Place the origin at the intersection, so that s(0) = 60 (the truck is traveling away from the intersection). The
second Maclaurin polynomial of s(t) is

T2(t) = s(0) + s′(0)t + s′′(0)

2
t2

The conditions of the problem tell us that s(0) = 60, s′(0) = 24, and s′′(0) = −3. Thus

T2(t) = 60 + 24t − 3

2
t2

so that after 4 seconds,

T2(4) = 60 + 24 · 4 − 3

2
· 42 = 132 m

The truck is 132 m past the intersection.

56. A bank owns a portfolio of bonds whose value P(r) depends on the interest rate r (measured in percent; for example,
r = 5 means a 5% interest rate). The bank’s quantitative analyst determines that

P(5) = 100,000,
dP

dr

∣∣∣∣
r=5

= −40,000,
d2P

dr2

∣∣∣∣
r=5

= 50,000

In finance, this second derivative is called bond convexity. Find the second Taylor polynomial of P(r) centered at r = 5
and use it to estimate the value of the portfolio if the interest rate moves to r = 5.5%.

solution The second Taylor polynomial of P(r) at r = 5 is

T2(r) = P(5) + P ′(5)(r − 5) + P ′′(5)

2
(r − 5)2

From the conditions of the problem, P(5) = 100,000, P ′(5) = −40,000, and P ′′(5) = 50,000, so that

T2(r) = 100,000 − 40,000(r − 5) + 25,000(r − 5)2

If the interest rate moves to 5.5%, then the value of the portfolio can be estimated by

T2(5.5) = 100,000 − 40,000(0.5) + 25,000(0.5)2 = 86,250

57. A narrow, negatively charged ring of radius R exerts a force on a positively charged particle P located at distance x

above the center of the ring of magnitude

F(x) = − kx

(x2 + R2)3/2

where k > 0 is a constant (Figure 12).
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(a) Compute the third-degree Maclaurin polynomial for F(x).

(b) Show that F ≈ −(k/R3)x to second order. This shows that when x is small, F(x) behaves like a restoring force
similar to the force exerted by a spring.

(c) Show that F(x) ≈ −k/x2 when x is large by showing that

lim
x→∞

F(x)

−k/x2
= 1

Thus, F(x) behaves like an inverse square law, and the charged ring looks like a point charge from far away.

x

x

R

F(x)

Nearly linear
here

Nearly inverse square
here

P

FIGURE 12

solution

(a) Start by computing and evaluating the necessary derivatives:

F(x) = − kx

(x2 + R2)3/2
F(0) = 0

F ′(x) = k(2x2 − R2)

(x2 + R2)5/2
F ′(0) = − k

R3

F ′′(x) = 3kx(3R2 − 2x2)

(x2 + R2)7/2
F ′′(0) = 0

F ′′′(x) = 3k(8x4 − 24x2R2 + 3R4)

(x2 + R2)9/2
F ′′′(0) = 9k

R5

so that

T3(x) = F(0) + F ′(0)x + F ′′(0)

2! x2 + F ′′′(0)

3! x3 = − k

R3
x + 3k

2R5 x3

(b) To degree 2, F(x) ≈ T3(x) ≈ − k
R3 x as we may ignore the x3 term of T3(x).

(c) We have

lim
x→∞

F(x)

−k/x2
= lim

x→∞

(
−x2

k
· −kx

(x2 + R2)3/2

)
= lim

x→∞
x3

(x2 + R2)3/2

= lim
x→∞

1

x−3(x2 + R2)3/2
= lim

x→∞
1

(1 + R2/x2)3/2

= 1

Thus as x grows large, F(x) looks like an inverse square function.

58. A light wave of wavelength λ travels from A to B by passing through an aperture (circular region) located in a plane
that is perpendicular to AB (see Figure 13 for the notation). Let f (r) = d ′ + h′; that is, f (r) is the distance AC + CB

as a function of r .

(a) Show that f (r) =
√

d2 + r2 +
√

h2 + r2, and use the Maclaurin polynomial of order 2 to show that

f (r) ≈ d + h + 1

2

(
1

d
+ 1

h

)
r2

(b) The Fresnel zones, used to determine the optical disturbance at B, are the concentric bands bounded by the circles
of radius Rn such that f (Rn) = d + h + nλ/2. Show that Rn ≈ √

nλL, where L = (d−1 + h−1)−1.

(c) Estimate the radii R1 and R100 for blue light (λ = 475 × 10−7 cm) if d = h = 100 cm.
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O

d'

d

R1
R2

R3

C

B

A

h

r
h'

FIGURE 13 The Fresnel zones are the regions between the circles of radius Rn.

solution

(a) From the diagram, we see that AC =
√

d2 + r2 and CB =
√

h2 + r2. Therefore, f (r) =
√

d2 + r2 +
√

h2 + r2.
Moreover,

f ′(r) = r√
d2 + r2

+ r√
h2 + r2

, f ′′(r) = d2

(d2 + r2)3/2
+ h2

(h2 + r2)3/2
,

f (0) = d + h, f ′(0) = 0 and f ′′(0) = d−1 + h−1. Thus,

f (r) ≈ T2(r) = d + h + 1

2

(
1

d
+ 1

h

)
r2.

(b) Solving

f (Rn) ≈ d + h + 1

2

(
1

d
+ 1

h

)
R2

n = d + h + nλ

2

yields

Rn =
√

nλ(d−1 + h−1)−1 = √
nλL,

where L = (d−1 + h−1)−1.

(c) With d = h = 100 cm, L = 50 cm. Taking λ = 475 × 10−7 cm, it follows that

R1 ≈ √
λL = 0.04873 cm; and

R100 ≈ √
100λL = 0.4873 cm.

59. Referring to Figure 14, let a be the length of the chord AC of angle θ of the unit circle. Derive the following
approximation for the excess of the arc over the chord.

θ − a ≈ θ3

24

Hint: Show that θ − a = θ − 2 sin(θ/2) and use the third Maclaurin polynomial as an approximation.

C

1

B

A

b

a
θ

θ
2

FIGURE 14 Unit circle.

solution Draw a line from the center O of the circle to B, and label the point of intersection of this line with AC as

D. Then CD = a
2 , and the angle COB is θ

2 . Since CO = 1, we have

sin
θ

2
= a

2
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so that a = 2 sin(θ/2). Thus θ − a = θ − 2 sin(θ/2). Now, the third Maclaurin polynomial for f (θ) = sin(θ/2) can be
computed as follows: f (0) = 0, f ′(x) = 1

2 cos(θ/2) so that f ′(0) = 1
2 . f ′′(x) = − 1

4 sin(θ/2) and f ′′(0) = 0. Finally,

f ′′′(x) = − 1
8 cos(θ/2) and f ′′′(0) = − 1

8 . Thus

T3(θ) = f (0) + f ′(0)θ + f ′′(0)

2! θ2 + f ′′′(0)

3! θ3 = 1

2
θ − 1

48
θ3

Finally,

θ − a = θ − 2 sin
θ

2
≈ θ − 2T3(θ) = θ −

(
θ − 1

24
θ3
)

= θ3

24

60. To estimate the length θ of a circular arc of the unit circle, the seventeenth-century Dutch scientist Christian Huygens
used the approximation θ ≈ (8b − a)/3, where a is the length of the chord AC of angle θ and b is length of the chord
AB of angle θ/2 (Figure 14).

(a) Prove that a = 2 sin(θ/2) and b = 2 sin(θ/4), and show that the Huygens approximation amounts to the approxima-
tion

θ ≈ 16

3
sin

θ

4
− 2

3
sin

θ

2

(b) Compute the fifth Maclaurin polynomial of the function on the right.

(c) Use the error bound to show that the error in the Huygens approximation is less than 0.00022|θ |5.

solution

(a) By the Law of Cosines and the identity sin2(θ/2) = (1 − cos θ)/2:

a2 = 12 + 12 − 2 cos θ = 2(1 − cos θ) = 4 sin2 θ

2

and so a = 2 sin(θ/2). Similarly, b = 2 sin(θ/4). Substituting these expressions for a and b into the Huygens approxi-
mation yields

θ ≈ 8

3
· 2 sin

θ

4
− 1

3
· 2 sin

θ

2
= 16

3
sin

θ

4
− 2

3
sin

θ

2
.

(b) The fifth Maclaurin polynomial for sin x is x − x3

6 + x5

120 ; therefore, the fifth Maclaurin polynomial for sin(θ/2) is

θ

2
− (θ/2)3

6
+ (θ/2)5

120
= θ

2
− θ3

48
+ θ5

3840
,

and the fifth Maclaurin polynomial for sin(θ/4) is

θ

4
− (θ/4)3

6
+ (θ/4)5

120
= θ

4
− θ3

384
+ θ5

122,880
.

Thus, the fifth Maclaurin polynomial for f (θ) = 16
3 sin θ

4 − 2
3 sin θ

2 is

θ − 1

7680
θ5.

(c) Based on the result from part (b), the Huygens approximation for θ is equal to the fourth Maclaurin polynomial T4(θ)

for f (θ), and the error is at most K|θ |5/5!, where K is the maximum value of the absolute value of the fifth derivative
f (5)(θ). Because

f (5)(θ) = 1

192
cos

θ

4
− 1

48
cos

θ

2
,

we may take K = 1/48 + 1/192 = 0.0260417, so the error is at most |θ |5 times the constant

0.0261

5! = 0.00022.

Further Insights and Challenges
61. Show that the nth Maclaurin polynomial of f (x) = arcsin x for n odd is

Tn(x) = x + 1

2

x3

3
+ 1 · 3

2 · 4

x5

5
+ · · · + 1 · 3 · 5 · · · (n − 2)

2 · 4 · 6 · · · (n − 1)

xn

n



March 30, 2011

1084 C H A P T E R 8 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

solution Let f (x) = sin−1 x. Then

f (x) = sin−1 x f (0) = 0

f ′(x) = 1√
1 − x2

f ′(0) = 1

f ′′(x) = −1

2
(1 − x2)−3/2(−2x) f ′′(0) = 0

f ′′′(x) = 2x2 + 1

(1 − x2)5/2
f ′′′(0) = 1

f (4)(x) = −3x(2x2 + 3)

(1 − x2)7/2
f (4)(0) = 0

f (5)(x) = 24x4 + 72x2 + 9

(1 − x2)9/2
f (5)(0) = 9

...
...

f (7)(0) = 225

and

T7(x) = x + x3

3! + 9x5

5! + 225x7

7! = x + 1

2

x3

3
+ 1

2

3

4

x5

5
+ 1

2

3

4

5

6

x7

7
.

Thus, we can infer that

Tn(x) = x + 1

2
· x3

3
+ 1

2

3

4

x5

5
+ 1

2

3

4

5

6

x7

7
+ · · · + 1

2

3

4
· · · n − 2

n − 1

xn

n
.

62. Let x ≥ 0 and assume that f (n+1)(t) ≥ 0 for 0 ≤ t ≤ x. Use Taylor’s Theorem to show that the nth Maclaurin
polynomial Tn(x) satisfies

Tn(x) ≤ f (x) for all x ≥ 0

solution From Taylor’s Theorem,

Rn(x) = f (x) − Tn(x) = 1

n!
∫ x

0
(x − u)nf (n+1)(u) du.

If f (n+1)(t) ≥ 0 for all t then

1

n!
∫ x

0
(x − u)nf (n+1)(u) du ≥ 0

since (x − u)n ≥ 0 for 0 ≤ u ≤ x. Thus, f (x) − Tn(x) ≥ 0, or f (x) ≥ Tn(x).

63. Use Exercise 62 to show that for x ≥ 0 and all n,

ex ≥ 1 + x + x2

2! + · · · + xn

n!
Sketch the graphs of ex , T1(x), and T2(x) on the same coordinate axes. Does this inequality remain true for x < 0?

solution Let f (x) = ex . Then f (n)(x) = ex for all n. Because ex > 0 for all x, it follows from Exercise 62 that
f (x) ≥ Tn(x) for all x ≥ 0 and for all n. For f (x) = ex ,

Tn(x) = 1 + x + x2

2! + · · · + xn

n! ,

thus,

ex ≥ 1 + x + x2

2! + · · · + xn

n! .

From the figure below, we see that the inequality does not remain true for x < 0, as T2(x) ≥ ex for x < 0.



March 30, 2011

S E C T I O N 8.4 Taylor Polynomials 1085

x

y

21−1−2

2

4

6

ex

T1

T2

64. This exercise is intended to reinforce the proof of Taylor’s Theorem.

(a) Show that f (x) = T0(x) +
∫ x

a
f ′(u) du.

(b) Use Integration by Parts to prove the formula∫ x

a
(x − u)f (2)(u) du = −f ′(a)(x − a) +

∫ x

a
f ′(u) du

(c) Prove the case n = 2 of Taylor’s Theorem:

f (x) = T1(x) +
∫ x

a
(x − u)f (2)(u) du.

solution
(a)

T0(x) +
∫ x

a
f ′(u) du = T0(x) + f (x) − f (a) (from FTC2)

= f (a) + f (x) − f (a) = f (x).

(b) Using Integration by Parts with w = x − u and v′ = f ′′(u) du,∫ x

a
(x − u)f ′′(u) du = f ′(u)(x − u)

∣∣∣∣x
a

+
∫ x

a
f ′(u) du

= f ′(x)(x − x) − f ′(a)(x − a) +
∫ x

a
f ′(u) du

= −f ′(a)(x − a) +
∫ x

a
f ′(u) du.

(c)

T1(x) +
∫ x

a
(x − u)f ′′(u) du = f (a) + f ′(a)(x − a) + (−f ′(a)(x − a)

)+
∫ x

a
f ′(u) du

= f (a) + f (x) − f (a) = f (x).

In Exercises 65–69, we estimate integrals using Taylor polynomials. Exercise 66 is used to estimate the error.

65. Find the fourth Maclaurin polynomial T4(x) for f (x) = e−x2
, and calculate I = ∫ 1/2

0 T4(x) dx as an estimate∫ 1/2
0 e−x2

dx. A CAS yields the value I ≈ 0.4794255. How large is the error in your approximation? Hint: T4(x) is

obtained by substituting −x2 in the second Maclaurin polynomial for ex .

solution Following the hint, since the second Maclaurin polynomial for ex is

1 + x + x2

2

we substitute −x2 for x to get the fourth Maclaurin polynomial for ex2
:

T4(x) = 1 − x2 + x4

2

Then ∫ 1/2

0
e−x2

dx ≈
∫ 1/2

0
T4(x) dx =

(
x − 1

3
x3 + 1

10
x5
) ∣∣∣∣1/2

0
= 443

960
≈ 0.4614583333

Using a CAS, we have
∫ 1/2

0 e−x2
dx ≈ 0.4612810064, so the error is about 1.77 × 10−4.
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66. Approximating Integrals Let L > 0. Show that if two functions f (x) and g(x) satisfy |f (x) − g(x)| < L for all
x ∈ [a, b], then ∣∣∣∣

∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∣∣∣∣ < L(b − a)

solution Because f (x) − g(x) ≤ |f (x) − g(x)|, it follows that

∣∣∣ ∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∣∣∣ =
∣∣∣ ∫ b

a
(f (x) − g(x)) dx

∣∣∣ ≤
∫ b

a
|f (x) − g(x)| dx

<

∫ b

a
L dx = L(b − a).

67. Let T4(x) be the fourth Maclaurin polynomial for cos x.

(a) Show that | cos x − T4(x)| ≤ ( 1
2

)6
/6! for all x ∈ [

0, 1
2

]
. Hint: T4(x) = T5(x).

(b) Evaluate
∫ 1/2

0 T4(x) dx as an approximation to
∫ 1/2

0 cos x dx. Use Exercise 66 to find a bound for the size of the
error.

solution

(a) Let f (x) = cos x. Then

T4(x) = 1 − x2

2
+ x4

24
.

Moreover, with a = 0, T4(x) = T5(x) and

|cos x − T4(x)| ≤ K
|x|6
6! ,

where K is a number such that |f (6)(u)| ≤ K for u between 0 and x. Now |f (6)(u)| = | cos u| ≤ 1, so we may take
K = 1. Finally, with the restriction x ∈ [0, 1

2 ],

|cos x − T4(x)| ≤ (1/2)6

6! ≈ 0.000022.

(b)

∫ 1/2

0

(
1 − x2

2
+ x4

24

)
dx = 1841

3840
≈ 0.479427.

By (a) and Exercise 66, the error associated with this approximation is less than or equal to

(1/2)6

6!
(

1

2
− 0

)
= 1

92,160
≈ 1.1 × 10−5.

Note that
∫ 1/2

0
cos x dx ≈ 0.4794255, so the actual error is roughly 1.5 × 10−6.

68. Let Q(x) = 1 − x2/6. Use the error bound for sin x to show that

∣∣∣∣ sin x

x
− Q(x)

∣∣∣∣ ≤ |x|4
5!

Then calculate
∫ 1

0 Q(x) dx as an approximation to
∫ 1

0 (sin x/x) dx and find a bound for the error.

solution The third Maclaurin polynomial for sin x is

T3(x) = x − 1

3!x
3 = x − 1

6
x3 = xQ(x)

Additionally, this is also T4(x) since (sin x)(4)(0) = 0. All derivatives of sin x are either ± sin x or ± cos x, which are
bounded in absolute value by 1. Thus we may take K = 1 in the Error Bound, so

|sin x − xQ(x)| = |sin x − T3(x)| = |sin x − T4(x)| ≤ K
|x|5
5! = |x|5

5!
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Divide both sides of this inequality by |x| to get ∣∣∣∣ sin x

x
− Q(x)

∣∣∣∣ ≤ |x|4
5!

We can thus estimate
∫ 1

0 (sin x/x) dx by

∫ 1

0
Q(x) dx =

∫ 1

0
1 − x2

6
dx =

(
x − x3

18

) ∣∣∣∣1
0

= 17

18
≈ 0.9444444444

The error in this approximation is at most

|1|4
5! = 1

120
≈ 0.008333333333

The true value of the integral is approximately 0.9460830704, which is consistent with the error bound.

69. (a) Compute the sixth Maclaurin polynomial T6(x) for sin(x2) by substituting x2 in P(x) = x − x3/6, the third
Maclaurin polynomial for sin x.

(b) Show that | sin(x2) − T6(x)| ≤ |x|10

5! .

Hint: Substitute x2 for x in the error bound for | sin x − P(x)|, noting that P(x) is also the fourth Maclaurin polynomial
for sin x.

(c) Use T6(x) to approximate
∫ 1/2

0
sin(x2) dx and find a bound for the error.

solution Let s(x) = sin x and f (x) = sin(x2). Then

(a) The third Maclaurin polynomial for sin x is

S3(x) = x − x3

6

so, substituting x2 for x, we see that the sixth Maclaurin polynomial for sin(x2) is

T6(x) = x2 − x6

6

(b) Since all derivatives of s(x) are either ± cos x or ± sin x, they are bounded in magnitude by 1, so we may take K = 1
in the Error Bound for sin x. Since the third Maclaurin polynomial S3(x) for sin x is also the fourth Maclaurin polynomial
S4(x), we have

|sin x − S3(x)| = |sin x − S4(x)| ≤ K
|x|5
5! = |x|5

5!
Now substitute x2 for x in the above inequality and note from part (a) that S3(x2) = T6(x) to get

|sin(x2) − S3(x2)| = |sin(x2) − T6(x)| ≤ |x2|5
5! = |x|10

5!
(c)

∫ 1/2

0
sin(x2) dx ≈

∫ 1/2

0
T6(x) dx =

(
1

3
x3 − 1

42
x7
) ∣∣∣∣1/2

0
≈ 0.04148065476

From part (b), the error is bounded by

x10

5! = (1/2)10

120
= 1

1024 · 120
≈ 8.138020833 × 10−6

The true value of the integral is approximately 0.04148102420, which is consistent with the computed error bound.

70. Prove by induction that for all k,

dj

dxj

(
(x − a)k

k!

)
= k(k − 1) · · · (k − j + 1)(x − a)k−j

k!

dj

dxj

(
(x − a)k

k!

)∣∣∣∣∣
x=a

=
{

1 for k = j

0 for k = j

Use this to prove that Tn(x) agrees with f (x) at x = a to order n.
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solution The first formula is clearly true for j = 0. Suppose the formula is true for an arbitrary j . Then

dj+1

dxj+1

(
(x − a)k

k!

)
= d

dx

dj

dxj

(
(x − a)k

k!

)
= d

dx

(
k(k − 1) · · · (k − j + 1)(x − a)k−j

k!

)

= k(k − 1) · · · (k − j + 1)(k − (j + 1) + 1)(x − a)k−(j+1)

k!
as desired. Note that if k = j , then the numerator is k!, the denominator is k! and the value of the derivative is 1; otherwise,
the value of the derivative is 0 at x = a. In other words,

dj

dxj

(
(x − a)k

k!

) ∣∣∣∣
x=a

=
{

1 for k = j

0 for k = j

Applying this latter formula, it follows that

dj

dxj
Tn(a)

∣∣∣∣
x=a

=
n∑

k=0

dj

dxj

(
f (k)(a)

k! (x − a)k

) ∣∣∣∣
x=a

= f (j)(a)

as required.

71. Let a be any number and let

P(x) = anxn + an−1xn−1 + · · · + a1 + a0

be a polynomial of degree n or less.

(a) Show that if P (j)(a) = 0 for j = 0, 1, . . . , n, then P(x) = 0, that is, aj = 0 for all j . Hint: Use induction, noting
that if the statement is true for degree n − 1, then P ′(x) = 0.

(b) Prove that Tn(x) is the only polynomial of degree n or less that agrees with f (x) at x = a to order n. Hint: If Q(x)

is another such polynomial, apply (a) to P(x) = Tn(x) − Q(x).

solution

(a) Note first that if n = 0, i.e. if P(x) = a0 is a constant, then the statement holds: if P (0)(a) = P(a) = 0, then
a0 = 0 so that P(x) = 0. Next, assume the statement holds for all polynomials of degree n − 1 or less, and let P(x) be
a polynomial of degree at most n with P (j)(a) = 0 for j = 0, 1, . . . , n. If P(x) has degree less than n, then we know
P(x) = 0 by induction, so assume the degree of P(x) is exactly n. Then

P(x) = anxn + an−1xn−1 + · · · + a1x + a0

where an = 0; also,

P ′(x) = nanxn−1 + (n − 1)an−1xn−2 + · · · + a1

Note that P (j+1)(a) = (P ′)(j)(a) for j = 0, 1, . . . , n − 1. But then

0 = P (j+1)(a) = (P ′)(j)(a) for all j = 0, 1, . . . , n − 1

Since P ′(x) has degree at most n − 1, it follows by induction that P ′(x) = 0. Thus an = an−1 = · · · = a1 = 0 so that
P(x) = a0. But P(a) = 0 so that a0 = 0 as well and thus P(x) = 0.

(b) Suppose Q(x) is a polynomial of degree at most n that agrees with f (x) at x = a up to order n. Let P(x) =
Tn(x) − Q(x). Note that P(x) is a polynomial of degree at most n since both Tn(x) and Q(x) are. Since both Tn(x) and
Q(x) agree with f (x) at x = a to order n, we have

T
(j)
n (a) = f (j)(a) = Q(j)(a), j = 0, 1, 2, . . . , n

Thus

P (j)(a) = T
(j)
n (a) − Q(j)(a) = 0 for j = 0, 1, 2, . . . , n

But then by part (a), P(x) = 0 so that Tn(x) = Q(x).
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In Exercises 1–4, calculate the arc length over the given interval.

1. y = x5

10
+ x−3

6
, [1, 2]

solution Let y = x5

10
+ x−3

6
. Then

1 + (y′)2 = 1 +
(

x4

2
− x−4

2

)2

= 1 + x8

4
− 1

2
+ x−8

4

= x8

4
+ 1

2
+ x−8

4
=
(

x4

2
+ x−4

2

)2

.

Because 1
2 (x4 + x−4) > 0 on [1, 2], the arc length is

s =
∫ 2

1

√
1 + (y′)2 dx =

∫ 2

1

(
x4

2
+ x−4

2

)
dx =

(
x5

10
− x−3

6

)∣∣∣∣∣
2

1

= 779

240
.

2. y = ex/2 + e−x/2, [0, 2]
solution Let y = ex/2 + e−x/2 = 2 cosh x

2 . Then, y′ = sinh x
2 and

√
1 + (

y′)2 =
√

1 + sinh2 x

2
=
√

cosh2
(x

2

)
= cosh

x

2
.

Thus,

s =
∫ 2

0
cosh

(x

2

)
dx = 2 sinh

(x

2

) ∣∣∣∣2
0

= 2

(
sinh

(
2

2

)
− sinh(0)

)
= 2 sinh(1).

Alternately, y′ = 1
2 (ex/2 − e−x/2), so

1 + (y′)2 = 1

4
(ex − 2 + e−x) + 1 = 1

4
(ex + 2 + e−x) =

[
1

2
(ex/2 + e−x/2)

]2
.

Because 1
2 (ex/2 + e−x/2) > 0 on [0, 2],

s =
∫ 2

0

1

2
(ex/2 + e−x/2) dx = (ex/2 − e−x/2)

∣∣∣∣2
0

= e − e−1 = 2 sinh(1).

3. y = 4x − 2, [−2, 2]
solution Let y = 4x − 2. Then √

1 + (
y′)2 =

√
1 + 42 = √

17.

Hence,

s =
∫ 2

−2

√
17 dx = 4

√
17.

4. y = x2/3, [1, 8]
solution Let y = x2/3. Then y′ = 2

3x−1/3, and

√
1 + (

y′)2 =
√

1 + 4

9
x−2/3 =

√
4

9
x−2/3

(
9

4
x2/3 + 1

)
= 2

3
x−1/3

√
1 + 9

4
x2/3.

The arc length is

s =
∫ 2

1

√
1 + (

y′)2 dx =
∫ 2

1

2

3
x−1/3

√
1 + 9

4
x2/3 dx.
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Now, we make the substitution u = 1 + 9
4x2/3, du = 3

2x−1/3 dx. Then

s =
∫ 10

13/4

√
u · 4

9
du = 8

27
u3/2

∣∣∣∣10

13/4
= 8

27

⎡
⎣103/2 −

(√
13

2

)3
⎤
⎦

= 8

27

(
10

√
10 − 13

√
13

8

)
≈ 7.633705415.

5. Show that the arc length of y = 2
√

x over [0, a] is equal to
√

a(a + 1) + ln(
√

a + √
a + 1). Hint: Apply the

substitution x = tan2 θ to the arc length integral.

solution Let y = 2
√

x. Then y′ = 1√
x

, and

√
1 + (

y′)2 =
√

1 + 1

x
=
√

x + 1

x
= 1√

x

√
x + 1.

Thus,

s =
∫ a

0

1√
x

√
1 + x dx.

We make the substitution x = tan2θ , dx = 2 tan θ sec2θ dθ . Then

s =
∫ x=a

x=0

1

tan θ
sec θ · 2 tan θ sec2θ dθ = 2

∫ x=a

x=0
sec3θ dθ.

We use a reduction formula to obtain

s = 2

(
tan θ sec θ

2
+ 1

2
ln | sec θ + tan θ |

) ∣∣∣∣x=a

x=0
= (

√
x
√

1 + x + ln |√1 + x + √
x|)
∣∣∣∣a
0

= √
a
√

1 + a + ln |√1 + a + √
a| = √

a(a + 1) + ln
(√

a + √
a + 1

)
.

6. Compute the trapezoidal approximation T5 to the arc length s of y = tan x over
[
0, π

4

]
.

solution Let y = tan x. With N = 5, the subintervals are
[
(i − 1) π

20 , i π
20

]
, i = 1, 2, 3, 4, 5. Now,

1 + (y′)2 = 1 + (sec2 x)2 = 1 + sec4 x

so the arc length is approximately

s =
∫ π/4

1

√
1 + sec4 x dx

≈ π

40

(√
1 + sec4 0 + 2

√
1 + sec4 π

20
+ 2

√
1 + sec4 π

10
+ 2

√
1 + sec4 3π

20
+ 2

√
1 + sec4 π

5

+
√

1 + sec4 π

4

)

≈ π

40
(1.41421356 + 2 · 1.43206164 + 2 · 1.49073513 + 2 · 1.60830125 + 2 · 1.82602534 + 2.23606797)

≈ 1.285267058

In Exercises 7–10, calculate the surface area of the solid obtained by rotating the curve over the given interval about the
x-axis.

7. y = x + 1, [0, 4]
solution Let y = x + 1. Then y′ = 1, and

y

√
1 + y′2 = (x + 1)

√
1 + 1 = √

2(x + 1).

Thus,

SA = 2π

∫ 4

0

√
2(x + 1) dx = 2

√
2π

(
x2

2
+ x

)∣∣∣∣∣
4

0

= 24
√

2π.
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8. y = 2

3
x3/4 − 2

5
x5/4, [0, 1]

solution Let y = 2

3
x3/4 − 2

5
x5/4. Then

y′ = x−1/4

2
− x1/4

2
,

and

1 + (y′)2 = 1 +
(

x−1/4

2
− x1/4

2

)2

= x−1/2

4
+ 1

2
+ x1/2

4
=
(

x−1/4

2
+ x1/4

2

)2

.

Because 1
2 (x−1/4 + x1/4) ≥ 0, the surface area is

2π

∫ 1

0
y

√
1 + (y′)2 dy = 2π

∫ 1

0

(
2x3/4

3
− 2x5/4

5

)(
x1/4

2
+ x−1/4

2

)
dx

= 2π

∫ 1

0

(
−x3/2

5
− x

5
+ x

3
+

√
x

3

)
dx

= 2π

(
−2x5/2

25
+ x2

15
+ 2x3/2

9

)∣∣∣∣∣
1

0

= 94

225
π.

9. y = 2

3
x3/2 − 1

2
x1/2, [1, 2]

solution Let y = 2

3
x3/2 − 1

2
x1/2. Then

y′ = √
x − 1

4
√

x
,

and

1 + (
y′)2 = 1 +

(√
x − 1

4
√

x

)2
= 1 +

(
x − 1

2
+ 1

16x

)
= x + 1

2
+ 1

16x
=
(√

x + 1

4
√

x

)2
.

Because
√

x + 1√
x

≥ 0, the surface area is

2π

∫ b

a
y

√
1 + (

y′)2 dx = 2π

∫ 2

1

(
2

3
x3/2 −

√
x

2

)(√
x + 1

4
√

x

)
dx

= 2π

∫ 2

1

(
2

3
x2 + 1

6
x − 1

2
x − 1

8

)
dx = 2π

(
2x3

9
− x2

6
− 1

8
x

) ∣∣∣∣2
1

= 67

36
π.

10. y = 1

2
x2, [0, 2]

solution Let y = 1
2x2. Then y′ = x and

SA = 2π

∫ 2

0

1

2
x2
√

1 + x2 dx = π

∫ 2

0
x2
√

1 + x2 dx.

Using the substitution x = tan θ , dx = sec2 θ dθ , we find that∫
x2
√

1 + x2 dx =
∫

sec3 θ tan2 θ dθ =
∫ (

sec5 θ − sec3 θ
)
dθ

=
(

1

4
sec3 θ tan θ + 3

8
sec θ tan θ + 3

8
ln | sec θ + tan θ | − 1

2
sec θ tan θ − 1

2
ln | sec θ + tan θ |

)
+ C

= x

4
(1 + x2)3/2 − x

8

√
1 + x2 − 1

8
ln |

√
1 + x2 + x| + C.

Finally,

SA = π

(
x

4
(1 + x2)3/2 − x

8

√
1 + x2 − 1

8
ln |

√
1 + x2 + x|

)∣∣∣∣2
0

= π

(
5
√

5

2
−

√
5

4
− 1

8
ln(2 + √

5)

)
= 9

√
5

4
π − π

8
ln(2 + √

5).
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11. Compute the total surface area of the coin obtained by rotating the region in Figure 1 about the x-axis. The top and
bottom parts of the region are semicircles with a radius of 1 mm.

1 mm

4 mm
x

y

FIGURE 1

solution The generating half circle of the edge is y = 2 +
√

1 − x2. Then,

y′ = −2x

2
√

1 − x2
= −x√

1 − x2
,

and

1 + (y′)2 = 1 + x2

1 − x2
= 1

1 − x2
.

The surface area of the edge of the coin is

2π

∫ 1

−1
y

√
1 + (

y′)2dx = 2π

∫ 1

−1

(
2 +

√
1 − x2

) 1√
1 − x2

dx

= 2π

(
2
∫ 1

−1

dx√
1 − x2

+
∫ 1

−1

√
1 − x2√
1 − x2

dx

)

= 2π

(
2 arcsin x|1−1 +

∫ 1

−1
dx

)

= 2π(2π + 2) = 4π2 + 4π.

We now add the surface area of the two sides of the disk, which are circles of radius 2. Hence the surface area of the coin
is: (

4π2 + 4π
)

+ 2π · 22 = 4π2 + 12π.

12. Calculate the fluid force on the side of a right triangle of height 3 m and base 2 m submerged in water vertically, with
its upper vertex at the surface of the water.

solution To find the fluid force, we must find an expression for the horizontal width f (y) of the triangle at depth y.

3

2

y

f (y)

By similar triangles we have:

y

f (y)
= 3

2
so f (y) = 2y

3
.

Therefore, the fluid force on the side of the triangle is

F = ρg

∫ 3

0
yf (y) dy = ρg

∫ 3

0

2y2

3
dy = ρg · 2y3

9

∣∣∣∣3
0

= 6ρg.

For water, ρ = 103; g = 9.8, so F = 6 · 9800 = 58,800 N.
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13. Calculate the fluid force on the side of a right triangle of height 3 m and base 2 m submerged in water vertically, with
its upper vertex located at a depth of 4 m.

solution We need to find an expression for the horizontal width f (y) at depth y.

3

2

y

f (y)

y – 4

4

By similar triangles we have:

f (y)

y − 4
= 2

3
so f (y) = 2(y − 4)

3
.

Hence, the force on the side of the triangle is

F = ρg

∫ 7

4
yf (y) dy = 2ρg

3

∫ 7

4

(
y2 − 4y

)
dy = 2ρg

3

(
y3

3
− 2y2

)∣∣∣∣∣
7

4

= 18ρg.

For water, ρ = 103; g = 9.8, so F = 18 · 9800 = 176,400 N.

14. A plate in the shape of the shaded region in Figure 2 is submerged in water. Calculate the fluid force on a side of the
plate if the water surface is y = 1.

x

y

1−1

y =

y = 1
2

1 − x2

1 − x2

FIGURE 2

solution Here, we can proceed as follows: Calculate the force that would be exerted on the entire semicircle and then
subtract the force that would be exerted on the “missing” portion of the ellipse. The force on the semicircle is

2w

∫ 1

0
(1 − y)

√
1 − y2 dy = 2w

∫ 1

0

√
1 − y2 dy − 2w

∫ 1

0
y

√
1 − y2 dy.

The first integral can be interpreted as the area of one-quarter of a circle of radius 1. Hence,∫ 1

0

√
1 − y2 dy = π

4
.

On the other hand, ∫ 1

0
y

√
1 − y2 dy = −1

3
(1 − y2)3/2

∣∣∣∣1
0

= 1

3
.

Thus, the force on the semicircle is

2w

(
π

4
− 1

3

)
.

Now for the ellipse. The force that would be exerted on the upper half of the ellipse is

2w

∫ 1/2

0
(1 − y)

√
1 − 4y2 dy = 2w

∫ 1/2

0

√
1 − 4y2 dy − 2w

∫ 1/2

0
y

√
1 − 4y2 dy.

Using the substitution w = 2y, dw = 2 dy, it follows that∫ 1/2

0

√
1 − 4y2 dy = 1

2

∫ 1

0

√
1 − w2 dw = π

8
,
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and ∫ 1/2

0
y

√
1 − 4y2 dy = 1

4

∫ 1

0
w
√

1 − w2 dw = 1

12
.

Thus, the force on the “missing” ellipse is

2w

(
π

8
− 1

12

)
.

Finally, the force exerted on the plate shown in Figure 2 is

F = 2w

(
π

4
− 1

3

)
− 2w

(
π

8
− 1

12

)
= π − 2

4
w.

15. Figure 3 shows an object whose face is an equilateral triangle with 5-m sides. The object is 2 m thick and is submerged
in water with its vertex 3 m below the water surface. Calculate the fluid force on both a triangular face and a slanted
rectangular edge of the object.

5 2

3
Water level

FIGURE 3

solution Start with each triangular face of the object. Place the origin at the upper vertex of the triangle, with the
positive y-axis pointing downward. Note that because the equilateral triangle has sides of length 5 feet, the height of the

triangle is
5
√

3

2
feet. Moreover, the width of the triangle at location y is

2y√
3

. Thus,

F = 2ρg√
3

∫ 5
√

3/2

0
(y + 3)y dy = 2ρg√

3

(
1

3
y3 + 3

2
y2
)∣∣∣∣5

√
3/2

0
= ρg

4
(125 + 75

√
3) ≈ 624,514 N.

Now, consider the slanted rectangular edges of the object. Each edge is a constant 2 feet wide and makes an angle of 60◦
with the horizontal. Therefore,

F = ρg

sin 60◦
∫ 5

√
3/2

0
2(y + 3) dy = 2ρg√

3

(
y2 + 6y

)∣∣∣∣5
√

3/2

0
= ρg

(
25

√
3

2
+ 30

)
≈ 506,176 N.

The force on the bottom face can be computed without calculus:

F =
(

3 + 5
√

3

2

)
(2)(5)ρg ≈ 718,352 N.

16. The end of a horizontal oil tank is an ellipse (Figure 4) with equation (x/4)2 + (y/3)2 = 1 (length in meters). Assume
that the tank is filled with oil of density 900 kg/m3.

(a) Calculate the total force F on the end of the tank when the tank is full.

(b) Would you expect the total force on the lower half of the tank to be greater than, less than, or equal to 1
2F ?

Explain. Then compute the force on the lower half exactly and confirm (or refute) your expectation.

3

−3

y

x
4−4

FIGURE 4

solution

(a) Solving the equation of the ellipse for x yields

x = 4

3

√
9 − y2.
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Therefore, a horizontal strip of the ellipse at height y has width 8
3

√
9 − y2. This strip is at a depth of 3 − y, so the total

force on the end of the tank is

F = ρg

∫ 3

−3
(3 − y) · 8

3

√
9 − y2 dy = 8ρg

∫ 3

−3

√
9 − y2 dy − 8

3
ρg

∫ 3

−3
y

√
9 − y2 dy.

The first integral can be interpreted as the area of one-half of a circle of radius 3, so the value of this integral is 9π
2 . The

second integral is zero, since the integrand is an odd function and the interval of integration is symmetric about zero.
Hence,

F = 8ρg
9π

2
− 8

3
ρg(0) = 8 · 900 · 9.8 · 9π

2
≈ 997,518 N.

(b) The oil in the lower half of the tank is at a greater depth than the oil in the upper half, therefore we expect the total
force Fl on the lower half of the tank to be greater than the total force Fu on the upper half. We compute the two forces
to verify our expectation. Now,

Fl = ρg

∫ 0

−3
(3 − y) · 8

3

√
9 − y2 dy = 8ρg

∫ 0

−3

√
9 − y2 dy − 8

3
ρg

∫ 0

−3
y

√
9 − y2 dy.

Similarly,

Fu = 8ρg

∫ 3

0

√
9 − y2 dy − 8

3
ρg

∫ 3

0
y

√
9 − y2 dy.

The first integral in each expression,

∫ 0

−3

√
9 − y2 dy and

∫ 3

0

√
9 − y2 dy,

can be interpreted as the area of one-quarter of a circle of radius 3, so both integrals have the value 9π
4 . Using the

substitution u = 9 − y2, du = −2y dy we find

∫ 0

−3
y

√
9 − y2 dy =

∫ 9

0

√
u

(
−1

2

)
du = −1

3
u3/2

∣∣∣∣9
0

= −9.

Moreover, since the integrand is an odd function, we have

∫ 3

0
y

√
9 − y2 dy = −

∫ 0

−3
y

√
9 − y2 dy = 9.

Thus,

Fl = 8ρg
9π

4
− 8

3
ρg(−9) = (18π + 24)ρg; and

Fu = 8ρg
9π

4
− 8

3
ρg(9) = (18π − 24)ρg.

We see that Fl > Fu. That is, the total force on the lower half of the tank is greater than the total force on the upper half,
as expected.

17. Calculate the moments and COM of the lamina occupying the region under y = x(4 − x) for 0 ≤ x ≤ 4, assuming
a density of ρ = 1200 kg/m3.

solution Because the lamina is symmetric with respect to the vertical line x = 2, by the symmetry principle, we know
that xcm = 2. Now,

Mx = ρ

2

∫ 4

0
f (x)2 dx = 1200

2

∫ 4

0
x2(4 − x)2 dx = 1200

2

(
16

3
x3 − 2x4 + 1

5
x5
)∣∣∣∣4

0
= 20,480.

Moreover, the mass of the lamina is

M = ρ

∫ 4

0
f (x) dx = 1200

∫ 4

0
x(4 − x) dx = 1200

(
2x2 − 1

3
x3
)∣∣∣∣4

0
= 12,800.

Thus, the coordinates of the center of mass are (
2,

20,480

12,800

)
=
(

2,
8

5

)
.
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18. Sketch the region between y = 4(x + 1)−1 and y = 1 for 0 ≤ x ≤ 3, and find its centroid.

solution

x

y

1 2 3 40

1

2

3

4

y = 1

y = 4(x + 1)−1

First, we calculate the moments:

Mx = 1

2

∫ 3

0

(
16

(x + 1)2
− 1

)
dx = 1

2

(
− 16

x + 1
− x

) ∣∣∣∣3
0

= 9

2
,

and

My =
∫ 3

0
x
(

4(x + 1)−1 − 1
)

dx =
∫ 3

0

(
4x

x + 1
− x

)
dx

=
∫ 3

0

(
4(x + 1) − 4

x + 1
− x

)
dx =

∫ 3

0

(
4 − 4

x + 1
− x

)
dx

=
(

4x − x2

2
− 4 ln(x + 1)

)∣∣∣∣∣
3

0

= 15

2
− 4 ln 4.

The area of the region is

A =
∫ 3

0

(
4

x + 1
− 1

)
dx = (4 ln(x + 1) − x)|30 = 4 ln 4 − 3,

so the coordinates of the centroid are: (
15 − 8 ln 4

8 ln 4 − 6
,

9

8 ln 4 − 6

)
.

19. Find the centroid of the region between the semicircle y =
√

1 − x2 and the top half of the ellipse y = 1
2

√
1 − x2

(Figure 2).

solution Since the region is symmetric with respect to the y-axis, the centroid lies on the y-axis. To find ycm we
calculate

Mx = 1

2

∫ 1

−1

⎡
⎣(√1 − x2

)2 −
(√

1 − x2

2

)2
⎤
⎦ dx

= 1

2

∫ 1

−1

3

4

(
1 − x2

)
dx = 3

8

(
x − 1

3
x3
)∣∣∣∣1−1

= 1

2
.

The area of the lamina is π
2 − π

4 = π
4 , so the coordinates of the centroid are(

0,
1/2

π/4

)
=
(

0,
2

π

)
.

20. Find the centroid of the shaded region in Figure 5 bounded on the left by x = 2y2 − 2 and on the right by a semicircle
of radius 1. Hint: Use symmetry and additivity of moments.

x

y

semicircle
of radius 1

x = ± 1 − y /2

1

FIGURE 5
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solution The region is symmetric with respect to the x-axis, hence the centroid lies on the x-axis; that is, ycm = 0.
To compute the area and the moment with respect to the y-axis, we treat the left side and the right side of the region
separately. Starting with the left side, we find

M left
y = 2

∫ 0

−2
x

√
x

2
+ 1 dx and Aleft = 2

∫ 0

−2

√
x

2
+ 1 dx.

In each integral we make the substitution u = x
2 + 1, du = 1

2 dx, and find

M left
y = 8

∫ 1

0
(u − 1)u1/2 du = 8

∫ 1

0

(
u3/2 − u1/2

)
du = 8

(
2

5
u5/2 − 2

3
u3/2

)∣∣∣∣1
0

= −32

15

and

Aleft = 4
∫ 1

0
u1/2 du = 8

3
u3/2

∣∣∣∣1
0

= 8

3
.

On the right side of the region

M
right
y = 2

∫ 1

0
x
√

1 − x2 dx = −2

3
(1 − x2)3/2

∣∣∣∣1
0

= 2

3
,

and Aright = π
2 (because the right side of the region is one-half of a circle of radius 1). Thus,

My = M left
y + M

right
y = −32

15
+ 2

3
= −22

15
;

A = Aleft + Aright = 8

3
+ π

2
= 16 + 3π

6
;

and the coordinates of the centroid are ( −22/15

(16 + 3π)/6
, 0

)
=
(

− 44

80 + 15π
, 0

)
.

In Exercises 21–26, find the Taylor polynomial at x = a for the given function.

21. f (x) = x3, T3(x), a = 1

solution We start by computing the first three derivatives of f (x) = x3:

f ′(x) = 3x2

f ′′(x) = 6x

f ′′′(x) = 6

Evaluating the function and its derivatives at x = 1, we find

f (1) = 1, f ′(1) = 3, f ′′(1) = 6, f ′′′(1) = 6.

Therefore,

T3(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 2)2 + f ′′′(1)

3! (x − 1)3

= 1 + 3(x − 1) + 6

2! (x − 2)2 + 6

3! (x − 1)3

= 1 + 3(x − 1) + 3(x − 2)2 + (x − 1)3.

22. f (x) = 3(x + 2)3 − 5(x + 2), T3(x), a = −2

solution T3(x) is the Taylor polynomial of f consisting of powers of (x + 2) up to three. Since f (x) is already in
this form we conclude that T3(x) = f (x).
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23. f (x) = x ln(x), T4(x), a = 1

solution We start by computing the first four derivatives of f (x) = x ln x:

f ′(x) = ln x + x · 1

x
= ln x + 1

f ′′(x) = 1

x

f ′′′(x) = − 1

x2

f (4)(x) = 2

x3

Evaluating the function and its derivatives at x = 1, we find

f (1) = 0, f ′(1) = 1, f ′′(1) = 1, f ′′′(1) = −1, f (4)(1) = 2.

Therefore,

T4(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 1)2 + f ′′′(1)

3! (x − 1)3 + f (4)(1)

4! (x − 1)4

= 0 + 1(x − 1) + 1

2! (x − 1)2 − 1

3! (x − 1)3 + 2

4! (x − 1)4

= (x − 1) + 1

2
(x − 1)2 − 1

6
(x − 1)3 + 1

12
(x − 1)4.

24. f (x) = (3x + 2)1/3, T3(x), a = 2

solution We start by computing the first three derivatives of f (x) = (3x + 2)1/3:

f ′(x) = 1

3
(3x + 2)−2/3 · 3 = (3x + 2)−2/3

f ′′(x) = −2

3
(3x + 2)−5/3 · 3 = −2(3x + 2)−5/3

f ′′′(x) = 10

3
(3x + 2)−8/3 · 3 = 10(3x + 2)−8/3

Evaluating the function and its derivatives at x = 2, we find

f (2) = 2, f ′(2) = 1

4
, f ′′(2) = − 1

16
, f ′′′(2) = 5

128
.

Therefore,

T3(x) = f (2) + f ′(2)(x − 2) + f ′′(2)

2! (x − 2)2 + f ′′′(2)

3! (x − 2)3

= 2 + 1

4
(x − 2) + −1/16

2! (x − 2)2 + 5/128

3! (x − 2)3

= 2 + 1

4
(x − 2) − 1

32
(x − 2)2 − 5

768
(x − 2)3.

25. f (x) = xe−x2
, T4(x), a = 0

solution We start by computing the first four derivatives of f (x) = xe−x2
:

f ′(x) = e−x2 + x · (−2x)e−x2 = (1 − 2x2)e−x2

f ′′(x) = −4xe−x2 + (1 − 2x2) · (−2x)e−x2 = (4x3 − 6x)e−x2

f ′′′(x) = (12x2 − 6)e−x2 + (4x3 − 6x) · (−2x)e−x2 = (−8x4 + 24x2 − 6)e−x2

f (4)(x) = (−32x3 + 48x)e−x2 + (−8x4 + 24x2 − 6) · (−2x)e−x2 = (16x5 − 80x3 + 60x)e−x2

Evaluating the function and its derivatives at x = 0, we find

f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −6, f (4)(0) = 0.
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Therefore,

T4(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 + f (4)(0)

4! x4

= 0 + x + 0 · x2 − 6

3!x
3 + 0 · x4 = x − x3.

26. f (x) = ln(cos x), T3(x), a = 0

solution We start by computing the first three derivatives of f (x) = ln(cos x):

f ′(x) = − sin x

cos x
= − tan x

f ′′(x) = −sec2x

f ′′′(x) = −2 sec2x tan x

Evaluating the function and its derivatives at x = 0, we find

f (0) = 0, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0.

Therefore,

T3(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 = 0 + 0

1!x − 1

2!x
2 + 0

3!x
3 = −x2

2
.

27. Find the nth Maclaurin polynomial for f (x) = e3x .

solution We differentiate the function f (x) = e3x repeatedly, looking for a pattern:

f ′(x) = 3e3x = 31e3x

f ′′(x) = 3 · 3e3x = 32e3x

f ′′′(x) = 3 · 32e3x = 33e3x

Thus, for general n, f (n)(x) = 3ne3x and f (n)(0) = 3n. Substituting into the formula for the nth Taylor polynomial, we
obtain:

Tn(x) = 1 + 3x

1! + 32x2

2! + 33x3

3! + 34x4

4! + · · · + 3nxn

n!
= 1 + 3x + 1

2! (3x)2 + 1

3! (3x)3 + · · · + 1

n! (3x)n.

28. Use the fifth Maclaurin polynomial of f (x) = ex to approximate
√

e. Use a calculator to determine the error.

solution Let f (x) = ex . Then f (n)(x) = ex and f (n)(0) = 1 for all n. Hence,

T5(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 + f (4)(0)

4! x4 + f (5)(0)

5! x5

= 1 + x + x2

2! + x3

3! + x4

4! + x5

5! .

For x = 1
2 we have

T5

(
1

2

)
= 1 + 1

2
+
(

1
2

)2

2! +
(

1
2

)3

3! +
(

1
2

)4

4! +
(

1
2

)5

5!

= 1 + 1

2
+ 1

8
+ 1

48
+ 1

384
+ 1

3840
= 1.648697917

Using a calculator, we find that
√

e = 1.648721271. The error in the Taylor polynomial approximation is

|1.648697917 − 1.648721271| = 2.335 × 10−5.
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29. Use the third Taylor polynomial of f (x) = tan−1 x at a = 1 to approximate f (1.1). Use a calculator to determine
the error.

solution We start by computing the first three derivatives of f (x) = tan−1x:

f ′(x) = 1

1 + x2

f ′′(x) = − 2x(
1 + x2

)2

f ′′′(x) =
−2

(
1 + x2

)2 + 2x · 2
(

1 + x2
)

· 2x(
1 + x2

)4 =
2
(

3x2 − 1
)

(
1 + x2

)3
Evaluating the function and its derivatives at x = 1, we find

f (1) = π

4
, f ′(1) = 1

2
, f ′′(1) = −1

2
, f ′′′(1) = 1

2
.

Therefore,

T3(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 1)2 + f ′′′(1)

3! (x − 1)3

= π

4
+ 1

2
(x − 1) − 1

4
(x − 1)2 + 1

12
(x − 1)3.

Setting x = 1.1 yields:

T3(1.1) = π

4
+ 1

2
(0.1) − 1

4
(0.1)2 + 1

12
(0.1)3 = 0.832981496.

Using a calculator, we find tan−11.1 = 0.832981266. The error in the Taylor polynomial approximation is∣∣∣T3(1.1) − tan−11.1
∣∣∣ = |0.832981496 − 0.832981266| = 2.301 × 10−7.

30. Let T4(x) be the Taylor polynomial for f (x) = √
x at a = 16. Use the error bound to find the maximum possible

size of |f (17) − T4(17)|.
solution Using the Error Bound, we have

|f (17) − T4(17)| ≤ K
(17 − 16)5

5! = K

5! ,

where K is a number such that
∣∣∣f (5)(x)

∣∣∣ ≤ K for all 16 ≤ x ≤ 17. Starting from f (x) = √
x we find

f ′(x) = 1

2
x−1/2, f ′′(x) = −1

4
x−3/2, f ′′′(x) = 3

8
x−5/2, f (4)(x) = −15

16
x−7/2,

and

f (5)(x) = 105

32
x−9/2.

For 16 ≤ x ≤ 17,

∣∣∣f (5)(x)

∣∣∣ = 105

32x9/2
≤ 105

32 · 169/2
= 105

8,388,608
.

Therefore, we may take

K = 105

8,388,608
.

Finally,

|f (17) − T4(17)| ≤ 105

8,388,608
· 1

5! ≈ 1.044 · 10−7.
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31. Find n such that |e − Tn(1)| < 10−8, where Tn(x) is the nth Maclaurin polynomial for f (x) = ex .

solution Using the Error Bound, we have

|e − Tn(1)| ≤ K
|1 − 0|n+1

(n + 1)! = K

(n + 1)!

where K is a number such that
∣∣∣f (n+1)(x)

∣∣∣ = ex ≤ K for all 0 ≤ x ≤ 1. Since ex is increasing, the maximum value

on the interval 0 ≤ x ≤ 1 is attained at the endpoint x = 1. Thus, for 0 ≤ u ≤ 1, eu ≤ e1 < 2.8. Hence we may take
K = 2.8 to obtain:

|e − Tn(1)| ≤ 2.8

(n + 1)!
We now choose n such that

2.8

(n + 1)! < 10−8

(n + 1)!
2.8

> 108

(n + 1)! > 2.8 × 108

For n = 10, (n + 1)! = 3.99 × 107 < 2.8 × 108 and for n = 11, (n + 1)! = 4.79 × 108 > 2.8 × 108. Hence, to make
the error less than 10−8, n = 11 is sufficient; that is,

|e − T11(1)| < 10−8.

32. Let T4(x) be the Taylor polynomial for f (x) = x ln x at a = 1 computed in Exercise 23. Use the error bound to find
a bound for |f (1.2) − T4(1.2)|.
solution Using the Error Bound, we have

|f (1.2) − T4(1.2)| ≤ K
(1.2 − 1)5

5! = (0.2)5

120
K,

where K is a number such that
∣∣∣f (5)x

∣∣∣ ≤ K for all 1 ≤ x ≤ 1.2. Starting from f (x) = x ln x, we find

f ′(x) = ln x + x
1

x
= ln x + 1, f ′′(x) = 1

x
, f ′′′(x) = − 1

x2
, f (4)(x) = 2

x3
,

and

f (5)(x) = −6

x4
.

For 1 ≤ x ≤ 1.2, ∣∣∣f (5)(x)

∣∣∣ = 6

x4
≤ 6

14
= 6.

Hence we may take K = 6 to obtain:

|f (1.2) − T4(1.2)| ≤ (0.2)5

120
6 = 1.6 × 10−5.

33. Verify that Tn(x) = 1 + x + x2 + · · · + xn is the nth Maclaurin polynomial of f (x) = 1/(1 − x). Show using
substitution that the nth Maclaurin polynomial for f (x) = 1/(1 − x/4) is

Tn(x) = 1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn

What is the nth Maclaurin polynomial for g(x) = 1

1 + x
?

solution Let f (x) = (1 − x)−1. Then, f ′(x) = (1 − x)−2, f ′′(x) = 2(1 − x)−3, f ′′′(x) = 3!(1 − x)−4, and, in

general, f (n)(x) = n!(1 − x)−(n+1). Therefore, f (n)(0) = n! and

Tn(x) = 1 + 1!
1!x + 2!

2!x
2 + · · · + n!

n!x
n = 1 + x + x2 + · · · + xn.
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Upon substituting x/4 for x, we find that the nth Maclaurin polynomial for f (x) = 1

1 − x/4
is

Tn(x) = 1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn.

Substituting −x for x, the nth Maclaurin polynomial for g(x) = 1

1 + x
is

Tn(x) = 1 − x + x2 − x3 + − · · · + (−x)n.

34. Let f (x) = 5

4 + 3x − x2
and let ak be the coefficient of xk in the Maclaurin polynomial Tn(x) of for k ≤ n.

(a) Show that f (x) =
(

1/4

1 − x/4
+ 1

1 + x

)
.

(b) Use Exercise 33 to show that ak = 1

4k+1
+ (−1)k .

(c) Compute T3(x).

solution

(a) Start by factoring the denominator and writing the form of the partial fraction decomposition:

f (x) = 5

4 + 3x − x2
= 5

(x + 1)(4 − x)
= A

x + 1
+ B

4 − x
.

Multiplying through by (x + 1)(4 − x), we obtain:

5 = A(4 − x) + B(x + 1).

Substituting x = 4 yields 5 = A(0) + B(5), so B = 1; substituting x = −1 yields 5 = A(5) + B(0), so A = 1. Thus,

f (x) = 1

x + 1
+ 1

4 − x
= 1

x + 1
+

1
4

1 − x
4

.

(b) The nth Maclaurin polynomial for f (x) =
1
4

1− x
4

+ 1
x+1 is the sum of the nth Maclaurin polynomials for the functions

g(x) = 1
4 · 1

1− x
4

and h(x) = 1
1+x

. In Exercise 33, we found that the nth Maclaurin polynomials Pn(x) and Qn(x) for g

and h are

Pn(x) = 1

4

(
1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn

)
= 1

4
+ 1

42
x + 1

43
x2 + · · · + 1

4n+1
xn =

n∑
k=0

xk

4k+1

Qn(x) = 1 − x + x2 − x3 + · · · + (−1)nxn =
n∑

k=0

(−1)kxk

Therefore,

Tn(x) = Pn(x) + Qn(x) =
n∑

k=0

xk

4k+1
+

n∑
k=0

(−1)kxk =
n∑

k=0

[
1

4k+1
+ (−1)k

]
xk;

that is, the coefficient of xk in Tn for k ≤ n is

ak = 1

4k+1
+ (−1)k.

(c) From part (b),

a0 = 1

4
+ 1, a1 = 1

42
− 1, a2 = 1

43
+ 1, a3 = 1

44
− 1

so that

T3(x) = 5

4
− 15

16
x + 65

64
x2 − 255

256
x3
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35. Let Tn(x) be the nth Maclaurin polynomial for the function f (x) = sin x + sinh x.

(a) Show that T5(x) = T6(x) = T7(x) = T8(x).

(b) Show that |f n(x)| ≤ 1 + cosh x for all n. Hint: Note that | sinh x| ≤ | cosh x| for all x.

(c) Show that |T8(x) − f (x)| ≤ 2.6

9! |x|9 for −1 ≤ x ≤ 1.

solution

(a) Let f (x) = sin x + sinh x. Then

f ′(x) = cos x + cosh x

f ′′(x) = − sin x + sinh x

f ′′′(x) = − cos x + cosh x

f (4)(x) = sin x + sinh x.

From this point onward, the pattern of derivatives repeats indefinitely. Thus

f (0) = f (4)(0) = f (8)(0) = sin 0 + sinh 0 = 0

f ′(0) = f (5)(0) = cos 0 + cosh 0 = 2

f ′′(0) = f (6)(0) = − sin 0 + sinh 0 = 0

f ′′′(0) = f (7)(0) = − cos 0 + cosh 0 = 0.

Consequently,

T5(x) = f ′(0)x + f (5)(0)

5! x5 = 2x + 1

60
x5,

and, because f (6)(0) = f (7)(0) = f (8)(0) = 0, it follows that

T6(x) = T7(x) = T8(x) = T5(x) = 2x + 1

60
x5.

(b) First note that | sin x| ≤ 1 and | cos x| ≤ 1 for all x. Moreover,

| sinh x| =
∣∣∣∣ ex − e−x

2

∣∣∣∣ ≤ ex + e−x

2
= cosh x.

Now, recall from part (a), that all derivatives of f (x) contain two terms: the first is ± sin x or ± cos x, while the second
is either sinh x or cosh x. In absolute value, the trigonometric term is always less than or equal to 1, while the hyperbolic
term is always less than or equal to cosh x. Thus, for all n,

f (n)(x) ≤ 1 + cosh x.

(c) Using the Error Bound, we have

|T8(x) − f (x)| ≤ K|x − 0|9
9! = K|x|9

9! ,

where K is a number such that
∣∣∣f (9)(u)

∣∣∣ ≤ K for all u between 0 and x. By part (b), we know that

f (9)(u) ≤ 1 + cosh u.

Now, cosh u is an even function that is increasing on (0, ∞). The maximum value for u between 0 and x is therefore
cosh x. Moreover, for −1 ≤ x ≤ 1, cosh x ≤ cosh 1 ≈ 1.543 < 1.6. Hence, we may take K = 1 + 1.6 = 2.6, and

|T8(x) − f (x)| ≤ 2.6

9! |x|9.
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