~ O ARNNATIMAN IV

A Division of Barnes & Nobie Publishing
W oB8B7654321

of SparkNotes LLC

SPARKCHARTS

Printed in the USA 54.95 | $6.95 CAN

P

Calculus is the study of smoothly changing funetions.

« Differontial calculus studics the way functions change and curve,

+ Integral colculus studics areas enclosed by curves, through
continnons, as opposed to diserete, summations Integration
lias many applications, including finding the length of an are
and the volume of a solid

« Differential equations cxpress @ relationship between a
function and its dervatives

« Infinite series are a useful way 1o oxpress certain functions. In
particular, expressing an otherwise intractible function as an
infinite Taylor polynomial makes ditficult tasks like value
approximation, differentintion, and integration easy.

FUNCTIONS, LIMITS,

A function is a set of ordered pairs (r, y) so that there is no

more than one y-value for each r-value. Plotted on the

Cartesian plane, a function must pass the verfical line test:

Every vertical line cuts the graph of the function at most onee.

« The domain of a function is the set of all allowable values
that can be plugged in for the independent variable, often ir.

+ The range is the set of all possible outputs (values of the
dependent variable, often y).

. Many functions are transformations of the so-called basic
. functions—polynomial functions, exponential function,
! logarithmic functions, and trigonometrie functions.

. VERTICAL TRANSLATION

« Adding a constant ¢ to a function y = f{xr) shifts it
vertically ¢ units (up if ¢ is positive, down if ¢ is
negative). The new funetion y = f(x) + ¢ has the same
shape and the same domain as the original function.

HORIZONTAL TRANSLATION
i » The function y = f(x — ¢} is a shift of the original
' funetion ¢ units horizontally (to the right if ¢ is positive,
to the left if ¢ is negative), The new function has the same
shape and the same range as the original function.

VERTICAL STRETCHING AND COMPRESSING

i = For positve ¢, the function y = of () is a vertical stretch
or compression of the original function. If ¢ > 1, then
the function y = ¢f(x) is stretch by a factor of . If
¢ < |, then y = cf(x) is a compression by a factor of &
Horizontal distances remain unchanged.
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| HORIZONTAL STRETCHING AND COMPRESSING

{ = For positive ¢, the function y = f (%) is a horizontal
stretchofyy = f(x) bya factorof ¢ if ¢ < 1 (a compression
by ! if ¢ > 1). Vertical distances don’t change.

. REFLECTION OVER THE x-AXIS

i * The function y = — f(x) is a reflection of the original

original range.

REFLECTION OVER THE y~AXIS
* The function y = f(
the y-axis. The new function has the same range as the
original; the domain is the negative of the original domain.

* If flz) = f(—x) for all x, then [ is called even: it
remains unchanged when reflected over the z-axis.

Ex: cos o s an even function.

o If flx) fl~x) for all 2, then [ is called odd:
reflecting [ over the x-axis is the same reflecting [ over
the y-axis. Equivalently, a 150° rotation around the
origin leaves [ unchanged. Ex: sin r is an odd function.

CALCULUS

x) is a reflection of iy = f(w) over

) and is equal to the i imi
function over the z-axis. The new funetion has the same : z 'ﬂ!ﬂ} Dfﬂl{ Eﬂe:ﬁdﬁ'l mm
domain as the original; the range is the negative of the |
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| « Function f is concave up on some interval if ifamsecnndh

| derivative " is positive everywhere on that interval; Hyzph
cups up. Function [ is concave down on an interval if f
negative there; its graph cups down. :

. 111eliner=uisavarlnd-yrrpbhﬁ:rf|ffbloml::
(positive or negative) infinity as & gets close ltoa. from ot
poth sides, Formally, =a is a vertical asymptol
lim f(x) = o0 cral_i_r:‘:‘_ f(a) = Fo0 orboth.

+ The line =bisa|nﬁzﬂrlh|mmpwhfnr.f!fﬂz)w‘ .
::;sembzs{ml becomes very large, for 1 positive oT nqnﬁn |
or hoth. Formally, y =15 is & horizontal asymptote if |

Jim flr) = b orﬂl:‘}giﬂ!(t) = b or both.

SUMMARY OF BASIC TERMS
« A function is a rule that assigns to each value of the

unique value of the range. - !
Function [ is continuous on some interval if whenever x 18

close to @y, f(xy) I8 close to [xy).
Function f s Increasing on some interval if whenever
< 2y JUr) < flog) (s0 ['(ir) 18 positive). It is
docroasing on an interval il whenever x| < ¥,
flay) = flaa) (s0 ['(x) Is negative). A nonincreasing or
nondeereasing function is called monatonic.

JFunetion [ is differentiable on an open interval if its derivative
exists everywhere on that interval. A differentiable function
st be continuous and must not have any vertical tangents.

CONTINUITY

INVERSE FUNCTIONS
If the function f passes the *horizontal line test” in its
domain—f() never takes the same value twice—then flz)
has a unique inversa /! (i) whose domain is the range of
[ () and vice versa,

« To find the inverse function, switch the roles of = and y
in the equation, effectively writing & = f(y). Then solve
for 3. If you can solve for y and each step is reversible,
then the function has an inverse. 3

o Ex: y = m + b The inverse function is y = #;(m'—'

o Ex: y = u*. The inverse function is y = log, =

 Graphically, y = [~'(z) has the same sh:
orginal function, but is reflected over the
u = Bx:y = ¢* and y = log z are inverse:

LIMITS

If the function |/ comes infinitely close to some

gets close to a, we say that L is the limit

approaches a and write lim f(2) = L.

« The existence or the value of lim f(z)
nothing at all about the existence or
Rather, comparing tbc'!j_:.&f x) and
continuity or the type of discontinuity of

FORMAL DEFINITION OF A LIMIT

Suppose that there exists a real numbe

following: for every & > () there exists

that whenever « is within § of a, f{

is | a] < & implies () ~ L| <
Then lim f(x) = L. X,

If no snch_ Lefm ihm '}.i-ﬁ S () does not exist.

ONE-SIDED LIMITS

We can consider the limit of f(x) as & approaches
one side only. ( ) A

* The left-hand "'"',E‘f_,f('”) is the value that
approaches when z is close to and smaller than a. |
* The right-hand limit lim, f(x) is the value that f(z)

domain a

-

- B Sl S

8 . IW

approaches when 7 is close to and larger than a. (wﬁéﬂ o o euﬂr'nt)' dpaieaty ; !
If the limit of f(x) as & — a exists, then so do both one- mﬁmzmmwmﬂwha

sided limits, and the three limits have the same value,
Similarly, if both the right-hand and the left-hand limits of
fla)asa — a*cxistandmeqnal,thmiiﬂ‘f(x) exists

Ex f(z) = % has a removable discontinuity at
* =2 Indeed, f is indistinguishable from = + 2
evmywhpre_except at & = 2, where [ is undefined. But
the discontinuity at x = 2 could easily be “removed” by

mserﬁr_lg the point (2, 4) to make the graph continuous.
If, as « approaches a, the value of f(r) grows without = INFINITE DISCONTINUITY .
Boiiel thén weu?'thal lim f(x) = 0. If either of the one-sided limits lim Sf(x) or lim :'
* We can distinguish between a o0 limit and a — oo limit, b 1

exists and is infinite, then f(x)
has a (possibly one-sided)
verfical asymptote at &+ — a, The
two-sided lim /() may
or may not exist.

* We can similarly discuss one-sided limits that tend to
infinity. For example, “’5‘, =

» If at least one u‘f‘:i_}:':i Jix) = +oc is true, then J has a
vertical asymptote at » = a,

LIMITS. AT INFINITY ;

We can also look at the limit of f(2) at +00 or — oo, Alimit

at infinity, if it exists, is what f(z) tends toward as || gets

very large, positively or negatively. Limits at infini
) g inf
sided. e e

Hofizontal asymptote: gy = L
Vertical o: = -
symplote. x = —1 ond r = 2
Removable discontinuity af & = 1

(4 2 - A)x— Bz -1

TOPICS ON YELLOW BACKGROUND ARE TESTED ON THE BC CALCULUS EXAM ONLY, TOPICS ON WHITE BACKGROUND ARE
. TESTED ON BOTH THE
AB AND THE BC EXAMS,

Hx W -2) e - 1)




DIFFERENTIATION

INTUITION

NOTATION

If a and b are two points in the domain of f (i) then the

average rate of change of f(2) on the interval [a, b] is
Sib)—f(a)

bh-a

a measure of how fast f(r) has increased or

! decreased over the interval. This is also the slope of the line
through the points (a, f(a)) and (b, f(b)) on the graph
of f(x).

The derivative of f(:) ata point x = a is the instantaneous
. rate of change, a measure of how fast f(z) is increasing or
decreasing at a. Equivalently, the derivative is the slope of
the tangent line to the graph of f(x) at the point x = a,
: where the tangent is the unique line through (a. f(a))
that touches the graph at only that point near x = a.

We compute the derivative f'(a) by looking at the average
rate of change of f(z) on the interval [a, a + A] and
taking the limit as / goes to (). Equivalently, f'(a) is the
limit as ki — 0 of the slope of the line through (a, f(a))
and (a + h, fla+ .’:J).

DEFINITION OF DERIVATIVE

If the limit

lim 2@+ h) — f(a)

h—0 h

exists, we say that [ is differentiable at + = a and the limit
i is the derivative of f(r) at = = a, denoted by f'(a).
| The functi :

e func mnf}(I} = flz+ k) — f(=x)
h—0 h

i is the derivative function of f(x). If it is defined whenever
© flx) is defined, then f is a differentiable function.

i If f(x) is differentiable at = a, then f(x) is continuous |

. at a. The converse is not true: a function can be continuous 1

i but not differentiable. There are two cases where this
occurs.

/ 1. No tangent
o= x| B f(z) =

lim |¢|= lim |z| =0,
o a=—0=
but the derivative f'(0) is
undefined since the left-hand
slope limit, hlix:):_ i%i =-1,
does not equal the right-hand
. - i
i =1,
slope limit f.l—l_lf;l* LXL

No tangent ot 2 = ()

¥

14—

S -

||
fix) =

J(0) undefined

2. Vertical tangent: The slope
of a vertical line is
undefined. If f(z) has a

vertical tangent at x =a, — “‘
-

then the derivative f’{ul 18

1 =
undefined and the graph of VGO at =0
f'{x) will have a vertical

asymptote at r = a.

B f(z)= =
vertical tangent at the point

(0, 0).

has a ‘ x

derivative
f’i ) e
3Vt

goes to infinity at ().

The

function,

J10) undefined

|z|. The function is |
continuous at x =( since |

There are several notations for the derivative; some are
more useful than others in certain contexts. The most
common notations used b) mathematicians are

dy
i), o, -—f[:] and AR

The last two are in I.elbﬂlz noicrhon J evolved from

the expression used to compute ﬂlape The expressions dy

and do represent infinitesimal changes in y and .
« Higher-order derivatives can be written in “prime

.:-L'Z
o
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Polynomial:
d{an ™ + -+ 33 + ar2 + ao)
dr
= na,a" " 4+ 2097 + a0
nential: d(e”) ="
Lo ’ dr

This is why € is called the “natural” logarithm base: Ae* are |
the only functions that are their own derivatives.

notation:  f'(x), f"(x), f’”fr) f“'frl f”"(-i‘ 3 !
dat) o a’lna }
ete., or in Leibniz notation: ] s 3 d‘; ,—,‘f. r“ 5. dr d
* The derivative at a particular pomt o is most often When in doubt, convert a” to etina,
expressed as f'(a) or Tg g d(ln-.r) e .
PROPERTIES OF DERIVATIVES || Lowsrtihmist S i
Assume that f and g are two differentiable functions. Found using implicit differentiation.
5ur:|jmd difference l d(log, x) I !
E-J—_(f(r}iy(r)) =f'(z) £ ¢'(z) J dx zlna
- - = ~ | When in doubt, convert lngazmlﬁ—:. i
i(cf(a:)) = ef'(a) | rigonometric: Found using the definition of derivative and
AR e | the Squeeze Theorem. I you know the dervativs of in z
Product i andcmx,youmnﬁndaﬂtheres!mingthe.deﬁniﬁﬂmaf
d " the trigonometric functions and the quotient rule.
& ([(@)9(@) = f'(@)g(z) + flx)g'(z) S
' d(sinx) dlcosz)
if f isHiand g s HO, then the Produd Rule is HO d Hi plus HId HO” S e S = —sinTg
Quotient ! ditanz) _ o dté;;r) T
d f(=)) _ fl2)g(e) — flx)g'(z) dr 3
9(@) #a) Aeeen) —seewtans N __cezeotr
The Quotient Rule is ‘HO d HI minus HI d HO over HO HO " : .
The Chain Rule takes the derivative of composite functions, I"verse frigonomefric: Found by implicit differentiation. |
Thmarehvnwmmunways’ofexpmmngrt d(sin=" z) - i d(cus—'.lm) r 1 [
l— Iif"s)( )) df (9(;-‘());!(3)( i az = Vi-z |
k4 u=g(x)andy = f(u) = f(g{z)), then i
dy _ dydu | dftn—z) 1 dlcot™z) 1 f
dr  dudr de L+z* R L
IMPLICIT DIFFERENTIATION disec'z) 1 dfese™lz) 1 "
Implicit differentiation uses the product and chain rules to da ozt —1 dx C avato1
find slopes of curves when it is difficult or impossible to
express y as a function of #. Leibniz notation may be ——
easiest when differennaung implicitly. Take the derivative = L'HOSPITAL'S RULE 1 I|
of each term in the equation with respect to x. Then —
rewrite % = 3/ and 42 — 1 and solve for /. Used to evaluate indeterminate form %Mﬁ
PSS g Joe sﬂmﬂd( both f(2) and g(x) mmma
I = and z);éuonanmtewnlneara except perha
Implicilly differentiating with respect to z gives the expression ; If lim f(z) = s l.lm( it RS,
A Ey% = 0, which simplifies to 2z + 2y =0 or | =~ z—a Or x-oug(z i
y' = —%. The derivative can now be found for any point on - - )
the curve. You wil get the same result i you first solve for | I B fie) =0 and Eg () = oo,
y = +V1 -~ 2* and keep Irack of the - signs in different | then lim LL} = l‘_‘.’t Lg (!:}

quadranis |

Ex 2: xcosy — y° = 3x
Differentiate to obtain first

li{\.(x\ i - 2; = 341;

dx
o= COBY o= o

dr

and then cos y — zsinyy’ — 24y’ = 3
o8 y—3

Finally, solve for ' = - =Sy

DERIVATIVES OF BASIC FUNCTIONS

Constant: 4 g
dr

A constant function is always flat.

d{mz + b)

Linear:

=m
dr

The line i = ma + b has slope m.

d(z™)

dx

Power Rule: = pg"—!

True for all real n + ()

+ L Hosplta]'s Rule may be used wrth one~s1ded hrmts !
* L'Hospital's Rule can also be applied if the limit is taken
as r approaches infinity. |
» If f'(x) and g’ () also satisfy the conditions for
I"Hospital’s Rule, higher derivatives can be taken until
the limit is well-defined.
* L'Hospital’s Rule cannot be applied to a fraction if the
top limit is infinite and the bottom is zero, or vice versa. |

Bx: hml ""1 Since lim1 Inez=00ond lima—1=0,
z— 1

use I'Hospital's Rule

]in) |n1 diln =)

= 1im Ty

* L'Hospital's Rule can be used to evaluate other
indeterminate forms, such as +00-0. The key is to |

convert the expression to to § or 3=
Ex: llm ze”. meeﬂluheexpressnon lim =
Z—+—00 B——00

which is an indeterminate form o= - Applying I'Hospital's Rule,

convertto lim —L_ =,
Tt =0

S R e TSR]
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AP CALCULUS

ANALYZING CURVES

Playing with a function's derivative gives a lot of
information about the function’s shape—not only the
direction it is traveling in at particular points, but also its
overall shape and behavior,

1
The tangent fine to a curve 3 = () at the point {a. f(a)) |
has the property that, near the point of tangency, it touches |

. the curve exactly once. That is, the tangent line touches the |

curve at the point of tangeney and nowhere else nearby.

|« A tangent line has the same slope as the function at the

| The line

point of tangency. So the line tangent to [ at the point |
where & = a has slope f'(a).

EQUATION OF THE TANGENT LINE

y = fla) + fl{a)(x — a)

| istangenttoy = f(x) ut (a, f(a)). The equation comes

form the point-slope formula.

. LINEAR APPROXIMATION

. The tangent line gives a crude way to approximate values |
i of f near x = a; if h is small, then f(a + h) is close to
. f'(a)h + f(a). This approximation is linear, and

! therefore easy to work with.

(a+h, fla+h)

(a+h, flah + fla))
(a, f(a)

2 :
y=fla)x-al+fla) X

Approximating f () near a: For small i,

fla+ h) = f'(a)h + f(a)

INCREASING AND DECREASING

| The sign of the derivative at a point tells us whether the
function is increasing or decreasing at that point.

| INCREASING FUNCTION

The function [ is increasing at = = a if f'(a) > 0.

i« This means that for b close to but a little bigger than a,
t we have f(b) > f(a).
| The function f is decreasing at v = a if f'(a) < 0.

!+ This means that for b close to but a little bigger than a,
wehmfﬂ< fla).

| NOT CHANGING

i 1f f'(a) = O then f is neither increasing nor de
= = a. The value f(a) may be maximal ne
near a, or neither.

| GLOBAL MINIMA AND

" The global minimum (or maximum) is the point where

| | assumes its least (or greatest) value

| inits domain. Global minima and ¥
| | maxima are also called absolute
! minima and maxima.
e Every global minimum (or x
maximum) is also a local joeal minimum
minimum (or maximum). No global minumum

« But a function may have local

minima (or maxima) but no global minima (or maxima).

Ex: f(r) = (22 + 1)e™" ; see image above right.

«+ A continuous function whose domain is a closed interval
(an interval that includes its endpoints) will always have
both a global minimum and a global maximum, possibly |

at one of the endpoints (Exireme Value Theorem).

EXTREMA INFLECTION AND CONCAVITY {
An extremum is either a minimum or a maximum, | CONCATY :
A function [ is concave up at x = a if

it is concave down at = = a if ["(a) < 0.

CRITICAL POINTS f(a) > 0.
A critical point is a point @ = @ in the domain of [ where |
f'(x) is zero ot undefined.

« Critical points are useful when searching for minima or | INFLECTION :
maxima: every extremum happens gither at an domain : A point of inflection on the graph of f is a point when the |
endpoint or at a eritical point. | concavity of [ changes, from up to down or vice versa.

| -fhasapuintofinﬂectionetx:aifanonl‘yiff'hasa ¢

EXTREMA HUNTING ________ JEEEPRee ‘
The key facts in this game are short and sweet. CURVE ANALYSIS SUMMARY

Important Concept ‘
+ f has a local minimum at & = a if and only if at if the ‘ 1. Endpoints: If the domain is an interval, evaluate the
1 function at the endpoints. If the domain is the whole real |

sign of f’ changes from — to -+ as x passes a. |
« [ has a local maximum at & = @ ifand only if atif the | |ine, establish what happens at £oc. Horizontal .

sign of f' changes from + to — as x passes d. asymptotes will appear i ]iT f(z) is finite. Evaluate |
porta oo :
e f(0) to find the y-intercept. i
2.Gaps: Find all isolated points = = @ where f(a) is not |

| defined. For each point @, look at lim_f(x). Avertical |

xT—4a 4

oo, A

« When seeking global extrema for [ defined on a closed
interval, find all critical poirits and compare the values of |
[ at the eritical points to the values of f at the interval
endpoints. The greatest value is the global maximum; the
least value is the global minimum. |

| asymptote will appear if ;-liq.]t flz) =

removable discontinuity (hole in the graph) will appear if

| Jl'im‘l f () exists and is finite.

1. CHECK CRITICAL POINTS WHERE [ () IS UNDEFINED. | 3.z-intercepts: If it is easy to determine when f(z) =0, |

« Such a point may be an extremum (Ex: f(x) = || at | doso. If not, evaluating the function at the critical points |
z =0). ; . " : and the endpoints will indicate where to look for zeroes. |

+ It may be a discontinuity (B f(2) = Fatz=0. 4. Rise and fall: Determine the intervals where the function

« Or it may be neither (Ex: f(x) = —é; atx = 0). is increasing and decreasing by looking at the siegn oF |
f'(z). If f'(x) >0, then f(r) is increasing. If
f(x) < 0, then f(z) is decreasing.

5.Local extrema: Find all local extrema by looking at the
critical points where f'(z) = 0 or where f'(z) is not
defined.

6. Concavity: Determine when the function cups up or down
by looking at the sign of f”(z). If f(x) >0, the
function is concave up; if f”(x) <0, then f(z) is

concave down. If f7(a) =0, then the function is

y not curving at # = a; if f/(x) is changing

The rest is all details.

| 2.CHECK CRITICAL POINTS WHERE [ () IS IS ZERO.

|« If the sign of f switches from + to — at & = a, then
fla) is a local maximum.

« 1f the sign of ' switches from — to + at @ = a, then
f(a) is a local minimum.

« 1f the sign of f' does not switch around = = a, then
f(a) is neither a maximum nor a minimum.

3.IF SEEKING GLOBAL EXTREMA, CHECK DOMAIN
This includes checking the behavior of the function at |
infinity if the domain is unbounded.

ns having the same derivative differ by a constant.
= g'(x), then f(x) = g(x) + C for some real
a function has only one family of :
‘This theorem follows from the MVT. {

| A function f continuous on the closed inteval [a, b] will |
| assume a global maximum and a global minimum i
| somewhere on [a. b]. 5

MG, f ns ol
constant f* and a

CONTINUED ON OTHER SIDE




INTEGRATION

f(x) on the interval [a, #], what is the
and the two vertical

Given a function y
area enclosed by this curve,

aand r = b?

the r-axis,
lines x
For simplicity of computation, we always speak of signed areo:
curve obove the z-axis is soid lo enclose “posilive” area, while o
curve below the r-axis encloses “negalive” area

i RIEMANN SUM APPROXIMATIONS

| We can approximate the are under a curve with different kinds
of Riemann sums. The exact area is the limit of these Riemann
! sums as the approximations get more and more fine.

LEFT-HAND RIEMANN SUMS

¢ areas of n rectangles, each of width Ax =
bottom corners at Ty
Zn =a+nAxr=> along
the r-axis. Number these ¥
rectangles 0 to n — 1 and
let the height of each
rectangle be the value of
flr) at the left x-axis
corner. The k™" rectangle
has height f(xy) and area

. Az f{x;). The total area of
the n rectangles, then, is

L= Az (f(x0) + flx1) +

=a,

)

0 a b
+ f(Zn-1))

. The larger n gets, the better the approximation.
Ex: We approximate the area under the curve y = z2 on
the interval |l1 l wlth 4 rectangles of width Az = ! and
heights 0, [ % e 1%,

Ly=1 (:m- + [_'i] + (gj" +

for a total area of
(1)*) = 0.21875

: RIGHT-HAND RIEMANN SUMS H
Using the same n subintervals along the z-axis, this time we |
take the height of each rectangle to be the value of f(z) at the |

i right endpoint. The height of the k** rectangle is now f(_.‘l k) |

for a total area of n
R = Az(f(z1) + flaa) + -+ flaw) = Az Y flze).
k=1

Unlike differentiation, integration is difficult—there are easy- |
to-write-down functions that don't have easy antiderivatives. |
The art of integration requires a bag of tricks. These are them.

#BASIC INTEGRALS
; fﬁ;r!.r:k.r+(' f%m-:mtruf

n+1
/.f"' dz = :; i +Cifn# -1

fﬁ"ah': e +C ]u‘rLr=L+C'
Ina

'[s‘iuj' der = —cosz+ C f{‘:]s)‘ dr =ginz +C

/.\‘0('3 zdr =tanz + C fsev.r tanz dr = secx + '

3 _/‘ﬁr]’.i‘ =tan~ 'z +C ‘/\”—i_ﬂd;-: sin”~ .
M INTEGRAL PROPERTIES i

Properties written for indefinite integrals also hold for definite |

L ]

integrals. Let f and g be integrable on [a, b].

/{IH'J:y{.:'l}-f.r:ffi;‘!dJ'iﬂ;(J'Jrl:r

b -
/ flz)dx=— | flx)da
a Jb

For any real number ¢,

/rf| rlde=¢ [[[.r)r!_r

Forany pwitha < p < b,

/ju:rh /ftrJrfr—/jH;d:
Betweenness: If f(x) < g(x) on the interval la, b], then

/.I."w' i /.‘.r,’l 7} da

! We approximate the area under the curve by the sum of the |
, with their |
Ty =a+ 4%, o5 |

Again, the larger n gets, the better the approximation.

Bx: For f(x) = 43 on the intcr\dl [0, 1],
Re=4 (1) + @)+ () +|1)*)—n4m¢.,
MIDPOINT RULE

This time, take the height of each rectangle to be f evaluated
at the midpoint of the rectangle. The height of the K
rectangle is now

fla+az (k+§) = (2tpn),
for a total area of

M, = dz (f (22) 4.1 (=) )

n—1

—ar Y g (),
k=0

GENERAL RIEMANN SUMS
In general, we can pick any sample point 1} in the | 5
subinterval. The area approximation, then, is

This general area approximation is called a Riemann sum, and its
limit as n increases gives the area of the region.

THE DEFINITE INTEGRAL

The definite integral of f(x) from = = a to b is defined as the
limit of Riemann sums:

n-1

ff[a }dr = iuu AJ:Zf i
=i

If this limit exists, then we say that f is integrable on the
interval [a, b]. This integral represents the area under f.

* In this notation, [ is the integral sign, f(x) is the integrand,
and b and a are the upper and lower limits of integration.

* The marker dx keeps track of the variable of integratim and
evokes a very small Ax.

* Just because a function is integrable does not mean that its
integral function is easy to write down in closed form.

* All piecewise continuous functions (those made up of
finitely many pieces of continuous functions) are integrable.
In practice, every function encountered in a Caleulus class
will be integrable except at points where it blows up.

TECHI\IIGUES of INTEGRATION

If u = g(x) is continuously differentiable on some interval and
f{x} is integrable on the range of g{x), then

[ #to@) o ) az = [ raan

or, with limits,

i (k)
( de = z
[ e ie= [ ud

= This is the analog of the Chain Rule for integrals. Tt is useful

for composite functions and products.

Ex: [ 2227 4 8 do. Since 2% is a lot like %*-—31, let
u=z*+8 Then du=3r*dr, so alde=d

Subsmutmg, we transfurm the original integral into
*\/ud‘u or]iui du = au* +C-'—g(:c +B}! +C.

INTEGRATION BY PARTS

Some function products and quotients cannot be integrated by
substitution alone. Integration by parts works when one piece
of the product has a simpler derivative and the other piece is
easy to integrate.

* This is the integral analog of the Product Rule:

d(fy) e +J‘y

INDEFINITE INTEGRALS
f f(2)g/(z) dz = f(z)glz) - f F(x)g(z) dz, or
j vdu

udy = up —
DEFNITIE INTEGRALS

b b
[ 1)@ da = flapgta - [ @) aa

Ex: /{21 +1)e % de

Let u=2r+1 (so du=2dr), and dv=e*dz (so
v = —e~"). The integral becomes
(22 +1) (-e7) —f“zr"""*"-

which  simplifies
(=22 — 3)e~~ 4 &L

to

~(2z+1)e® -2 = +C, or

THE INDEFINITE INTEGRAL

Antidifferentiation is the reverse of differentiation: an
antiderivative of f(x) is any function F'(x) whose derivative is |
equal to the original function: F’(x) = f(x). Functions that |
differ by constants have the same derivative; therefore, we .'
look for a family of antiderivatives () + ', where (' many
real constant.

The family of the antiderivatives of f(x) is denoted by the
indefinite integral:

| /f{:)d.r:F(x]+C‘

if and only if F'(x) = f(x).

‘ FUNDAMENTAL THEOREM

B OF CALCULUS

| The Fund | Th of Caleulus (FIC) brings together |
I differential and integral caleulus. The main point is thatg
| differentiation and integration are reverse processes: finding !
| anndemauveswahtﬂkeca]nﬂaﬁngmmduw :

|

PART 1
Let f(x) be a function continuous on the interval [a, b]. Then
the area function

P = [ f)a
is continuous on [a, b] and differentiable on (a b), and
F(z) = f(z)-

. PART2
| If f(z) is a function continuous on the interval |a, b] and
F(x) is an antiderivative of f(z), then

f fla)dz = F(b) - F(a).

The total ch in the antiderivative fu
interval is the same as the area under the curve.

il PARTIAL FRACTIONS !

To integrate a rafional function—a quotient of two‘
‘ polynolma]s ﬂrstdewmposeitasalumafsunplerw

If the di r factors as a product of linear
factors (and it always will on the AP), the partial fractions will
be constants over the linear factors. Solve for the .

|

| e :
| mnxtaum;tbmum[:u=ln|uf+cmintegmtemhterm.j
! PARTIAL FRACTIONS STEP BY STEP
|
|

To integrate f(x) = EE

1. If necessary, uulongeivbimbomakesurethatthedegau
ofihenumemtﬂr:slmthanthedesreeofthedenummator.
I the polynomial part separately. :

2.Factor the denominator into a product of linear factors, If
q(x) is quadratic, then g(r) = (az + b)(cx + d).

i anmmpmqﬁé;}iﬂuasumofpwﬁultncﬁms.lfq[z)m

| quadratic, then

% i m T catd’ H

Solve for A and B by multiplying the equation by g(x) and |
equating coefficients, i
4.Integrate each pu'aal fraction individually. For example,

A
| M+bd~r=-ln|ax+b|+c

& 3_ .2 = S I
| ExTo integrate 2,2 =187 g6 ong division to reexpress

s
| Tmemem —etde el
Factor the denominator and set up the partial fraction:
dz4+17 4z 47 A R
22755 -12 (m+3a—4) =3 a—1
Cross-multiply to get

dr+17= Az —4) + B(22 + 3)
= (A+2B)x — 44 + 3B.

. Add four times the first equation to the second to get
| 11B =33, 0r B = 3, which makes A = —2. Fina!]y. integrate:

j w417
| 208 —Br—12 f2r+3 .r—4

=—Inf2z + 3 +3n|x - 4| + C.

Equate coefficients to get A + 28 = 4 and —44 +3B = 17. :
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APPLICATION
T R T N

Suppose that f{x) = giz) on the
interval [a.b] and both functions
are continuous. Then the area

bounded by the two curves
y = flx), y = glxr) and the two
vertical lines r = a and x = bis
b
/ (f{x) = ylx)) dz.
Ja

* In general, the positive area

! between two (potentially
intersecting) continuous
functions f and g from r = a to

r=bis b
/ |fix) — glz)| dx

PHYSICAL MOTION !

| 1f the position of a particle moving along a straight line is given
by s(t), them its velocity is given by wv(t) = &'(t) and its
aceeleration is given by a(t) = /() = s"(t). Conversely,

13 4
v(t) = v +/ a(k) dk ands(t) = sp + / v(k)dk. |
0 J0

" Shaded oreais
/ (f(x) — glx)) dz.

| The total distance that the particle has traveled from { = a to

t = b is given by 'y
f |u(t)| dt.

S of INTEGRATION
Muotme = m o L AVERAGRNALUR

If a solid in space is oriented so that the area of a cross-secfion
(the slice of solid ereated by intersection with a plane) |
perpendicular to the z-axis is given by A(x). Then the volume
of solid bounded by the planes r = a and x = b is

b
Vv ==f Alx) dx
DISK METHOD

The volume of the solid swept out by the curve i = f(z) as it
revolves around the z-axis between x = a and = = b is given by

b :
/wtmdius)* dr or rrf (flx)) dz. |

a

WASHER METHOD

If f(2) = g(x) between
a and b, then the
volume of the solid
swept out between the
two curves y = f(x)
and y = g(x) as they
revolve around the x-
axis between x =a

andr =bis i

5 " |
j rlouter r)? — w(inner r)? dr = :rf (I{:J)J - (g(r)]Q dr, |

Woasher method

DIFFERENTIAL EQUATIONS

| A differentiol equation (diffeq) is any equation involving

| derivatives. The AP only uses only diffeqs that can be solved

{ into the form ﬂ‘ — F(x, y), where F is a function of = and y.

_' « A solution (or a particular solution) to a diffeq is any curve
that satisfies the diff-eq. Ex: y = sin2zr 4 3cos2r is a
solution to the diffeq ¥ + 4y = 0.

!« The general solution to a diffeq is the complete family of |

curves that satisfy the diffeq. Bx: #? +y* = C where C > 0,
| is the general solution to the diffeq ' = — 3.
|« An initial condition is a point on the curve that chooses a
particular solution out of the family of general solutions.
Ex: The unique curve that both satisfies y' = — 7 and passes
through the point (5, 0) is 2% + * = 25.
Although the vast majority of diffeqs are difficult to solve
. exactly, we can find approximate solutions—graphically, by
sketching slope fields, or numerically, by using Euler's method.

SEPARABLE DIFFEGS

| A diffeq is called separable if it can be expressed in the form
| 9 — f(r)g(y) where f and g depend on one variable only—

| ds

that is, if it's possible to separate the variables completely.
Bx: 9 = revsin® z is separable, but % =+ yisnot.

« To solve a separable diffeq, abuse Leibniz notation and

rewrite as ;{7 dy = f(x) dr. Integrate each side separately.
Only one constant ' is necessary.

g Both exponential growth and the logistic equation are

separable.

{ EXPONENTIAL GROWTH AND DECAY

The diffeq 2¢ = ky is a common separable diffeq.

|« Solution: General solution is y = Ae*'.

: i

| » Solving: Separate and rewrite as f J = / kdit . Integrate
u

to get Inly| = kt+C, or +y=e*“. Since e is a

positive multiplicative factor, replace +¢“ by the constant A.

Rewrite as y = Ae*!
| = Growth or decay? If k > 0, the solution represents exponen-
tial growth; if k < 0, exponential decay.
¢ A = y(0) is the initial value of the function.

IMPROPER INTEGRALS

Improper integrals come in two types. 1
1. Integrals over an infinite discontinuity. Ex: = dx

x 40
3
2. Integrals over an infinite interval. Ex:/ e " dr
(s

Some impromper integrals converge, that is, represent a finite
area; others diverge. To check convergence of an improper
integral, reinterpret it as a limit expression and check whether the
limit exists and is finite.

b

The integral [ f(r) dr is improper if at some point ¢, with

a < ¢ < b, the function blows up; that is, if lim f(x) = %00,
s

LEFT ENDPOINT [ = a)

h b
[f'r,\rfr |i|||l_ [ f{)'}!fr

Word problems that reduce to %} = ky

« Unlimited population growth: i is the population size at time f;
k, often given as a percentage, is the relative growth rate.

» Radioactive decay: y is the mass of the radioactive element
present at time ¢; k is negative, sometimes conveyed in terms
of the element's half-life fi—the amount of time it takes for
half u‘lf :he remaining mass of the element to decay;
k=-12

A slope field (or direction field) graphically shows the family of [

solutions to a diffeq in %ﬁ = F(z, y) form.

Drawing a slope field

For each lattice point (o, vo), draw a short line segment with
slope F(xq, yo). This line mimics the shape of the particular
solution to the diffeq that passes through (zo, yo)-

Interpreting a slope field

Find the particular solution that goes through a given point by
following the shape of the slope field through that point. Find
the family of solutions by tracing particular solutions through
several different points.

¥
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slope field and three solutions
5Iopeﬁeldlorj—f=m—y opeio‘-’ff=m’—y’

Features of a slope field
» A slope field's dashes are horizontal whenever F(x, y) = 0.

£x: The slope field for 3¢ = z* — y* is horizontal whenever

1% — 3 = 0, that is, along the lines & = and x = —y.

RIGHT ENDPOINT (¢ = b)
b t
[ faria = jim [ 1@

INTERIOR (o < ¢ < D)
b o 1
ff(.r)d.r=[ f(rldr+f f(x)de

For a discrete set of values, their average multiplied by their |
number gives their sum. The analog of an average for a!
continuous function f(x) ¥ :
on the interval [a, b] is the
average value [, which
has the property that the
rectangle of height f and
width b — @ has the same
area us is enclosed under {4 e b

the curve y = f(x). Thus -~
' " £ is the overage value of f on !
e bf_n_/:, flx) da.

the interval [a, b
Blue area = gray orea

If () has a continuous derivative on the interval {a, b), then
the length of the curve from 1 = a toz = b is

b 2
In Leibniz notation this becomes L = f 1+ (:—y) dr.
A <3

LOGISTIC GROWTH ]
| The logistic equation is a separable diffeq that models |
| population growth taking into account limited natural ;

|« Equation: A population P(t) with natural growth rate k and I
maxiumum camying capacity P, will satisfy the logistic |
differential equation :

| dP P
| E-l-x)
« Solving: Rewrite as
kdt = A—pﬂ*—;P_F7P dP
and integrate using
partial fractions.
+ General solutuion:

Q P,
| PO=14=-

_ inifil condition Py = P(0).
| Features of logistic growth

P Several solufions 1o
i _oP(1-§

dt

10- - - -}

o

where A = Bﬂ'ﬁe‘* is determined by

| e If Py = Oor Py = Py, then & = 0: the population is stable.
e If < Py< Py, then P(t) is always increasing and

| Jim P(t) = P, Inflection point when P(t) = B
—o

and lim P(t) = P
t—oo

« If Py > P, then P(t) is always decreasing and concave up,

EULER’'S METHOD 5,

Euler’s method uses iterative approximations to find numerical :

solutions to a diffeq through a particular point.

« Given diffeq §L = F(z, y), initial point (zo, o), step |
size Ar, and number of steps n, Euler's method ;

approximates y, = y{xo + nAx):
| I =1z + Az n = yo + AzrF(xo. wo)
| Tg=m + Az va =t + AxF(z, 1n)

Ty = Tp +ndx Un = Ya-1 + AZF (20 1, Yn-1)

INFINITE RAY TO THE RIGHT
i / I(I)d::!limf Slw)dr
| INFINITE RAY TO THE LEFT
b b
f flo)dz = lim ff(,r'm:-
-0 t—=—m f,

The original integral converges only if both endpoint-improper |

integrals converge.

- e diverges, but [ - de converges, to 0
I eiis ki

P ¥ .
. ] = converges (and equals = )if and only if r > 1.
1

WHOLE REAL LINE
| f f[_;]rj_zzj _fu-.)dr+f flz)dxr.

for any c. The original integral converges o
interval integrals converge.
—— converges (and is equal to i

f'd.r
-
- i

yif and only if r

|« Increasing n or decreasing Ax improves the approximation. ]

nly if both half- |

1




PARAMETRIC EQUATIONS and POLAR CURVES

PARAMETRIC EQUATIONS

A parametric curve defines both the r- and the y-coordinates in

terms of a third variable, often ¢ for time.

* B sint for 0 < ¢t -
equations that describe the unit circle.

2m are parametric

cost and y

CONVERTING

To convert a curve described parametrically to Cartesian

coordinates, eliminate { to relate r and y directly. You may or

may find that y is a proper function of .

« Ex: Use cos® # 4 sin @ = 1 for to relate r and y with the
familiar =° + »* = 1 equation for the unit circle.

N GEOMETRY OF THE CURVE

SLOPE OF THE TANGENT LINE
r_;.'ff o ”TW _ v

dr ] - ;ET)

dy 5 g
0 but .f_;I # (), then the tangent is vertical.

AREA DEFINED BY CURVE
The area between the r-axis and the curve traced out from

f=atot=his il ,
A /Um.rm.u

This integral is positive if the curve Is moving forward (f ’Jj = (0 for
u < t < bland negative If the curve Is moving bockwards

ARC LENGTH
The length of a parametric curve traced out from ¢ = u to
IIF

L=Dhis
[ rfi;
/ 1(.# (.rr) i

Polar coordinates describe a point /' = (»,#) on a plane in
terms of its distance r from the pole (usually, the origin (J) and

the (counterclockwise) angle # that the line (JF makes with a
reference line (usually, the positive r-axis).

SEQUENCES and SERIES

Complicated functions can sometimes be approximated with
nfinite polynomials called power series, which are easy to
differentiate and integrate.

A sequence is an ordered list of real numbers, called terms.

An infinite sequence has infinitely many terms.

* Notation: The infinite sequence
represented by {ay }72, or just {ay ).

* A sequence is defined explicitly with a formula for each term.
Ex: {n?}° explicitly defines the sequence 1, 4, 9, 16, ....

* Asequence is defined recursively if each term is defined using
preceding term(s). Ex: {a,} with and

1 + (2n — 1) is a recursive definition for 1, 4, 9, .. ..

ay, ay, ag, is

ay =1

LIMIT OF A SEQUENCE

Intuitively, the limit of an infinite sequence, denated ]lm @y, is
the value that the sequence approaches,

= If the limit exists (and is finite), llle scquem-e converges.

Otherwise the sequence diverges. Ex: §, %, %, .. converges
to 1. Butboth {(—1)"} and {n?} d:wrgc
* Formally,

h.f“ iy, exists and is equal to a if for all £ > 0

there exists an IV so that |a,, — a| < £ whenever n > N,

* Ifthe terms of sequence {4, } tend to infinity, we can say that |

lim a, = oo. But {a,,} is still called divergent.
t—s00

INCREASING AND DECREASING SEQUENCES

Sequence {a,} is called increasing if a, < ax., for all k.
Similarly, {a,} is decreasing if a; > ;. forall k.

* A monotonic sequence is either increasing or decreasing.

* A sequence is bounded above if every term is smaller than a

fixed constant. Similarly, a sequence is bounded below if |

every term is greater than a fixed constant, A bounded
sequence is bounded both above and below.

* Monotonic Sequence Theorem: All bounded, monotonic |

Sequences are convergent.

A series is a summed sequence. An infinite series has infinitely
many terms.

* Notation: The infinite series a; +ay+ag+--« is

x
represented as 3 ag or just }_ ay.
=

* A partial sum of a series is a cutoff series sum.
"

Bn =@y +ag+ 1+ aa =}, ag.

* Alternafing Series Test: The alternating series converges if both
1. The terms are decreasing: a,, ;| < a,, for all n.

2. The terms tend to zero:

* Emor bound: 1f 37(—1)"ay umvcrgr.-q to a and satisfies the

conditions of lhe Alternating Series Test, then the error from

L( l}*ru. then

k=0

|11|1 Oy = = ().

truncation less than the next term: if s, =
|80 — a| < ayir.

DIVERGENCE TEST
If IiuL ay, # 0 (or if lim a, does not exist), then the series
Pl e

Z a,, diverges.

COMPARISON TESTS

If 3 a, and 3~ b,, are series with positive terms . . .

* Convergence: If 3 0, converges, and a,, < b, for all n, then
3 a, converges.

* Divergence: If 3 b, diverges and a,, > b, for all n, then
Y- ay diverges.

* Limit comparison test: If lim %’J
T=200 Uy

cither both series converge or both series diverge.

is finite and nonzero, then

INTEGRAL TEST

If {ay} is a monotonically decreasing positive sequence and

flx) is a mntir;'uuus function with f(n)=a, for all n,

then the -:er‘\ea. 2. ay converges if and only if the improper

n=1

lntegra] f (x) dr converges,

ABSOLUTE CONVERGENCE TEST

The series 3 a,, converges absolutely if the series of absolute

values ) |a, | converges.

* Absolute Convergence Test: If a series conveges absolutely,
then it is convergent.

* If 5 |a,| does not converge but the original series Ya,
does, then we say that 3" a,, converges conditionally.

RATIO TEST

N ) A
Suppose 3 a,, is a series and lim |-
Sl

fin
¢ If L < 1 then the series converges absolutely.

¢ If L > 1, orif the limit is infinite, then the series diverges.
* If L = 1 then the test is inconclusive.

= [ exists.

POWER SERIES

k=1 |
* A series converges if the sequence of partial sums has a finite |
limit. This limit is the sum of the series. If the partial sums do |

not converge, the series diverges.

GEOMETRIC SERIES
A geometric series has the form o
u+ ar + ar? + ar? -—}:m

* Convergence: The series 3~ ar* converges Ifand onlyif |»| < 1.
* Sum: If |r

< 1, the series converges to T

P-SERIES
A p-series has the form | + L + 1 + l

i L.

* Convergence: The series L .+ converges if and on]y ifp > 1.
* Harmonic series: Byname for the divergent p-series with p = 1:
- f;] L,

1+

3 y

i

ALTERNATING SERIES

An alternating series has terms with alternating + signs:
}:: (=1)"t,, with all a,, positive,

CONVERTING FROM CARTESIAN TO POLAR
User = /xd + y? and@ = tan " ¥,

CONVERTING FROM POLAR TO CARTESIAN
Use a0 = rcos @ and y = rsin @,

GEOMETRY OF THE CURVE :

SLOPE OF THE TANGENT LINE
dy :% sin U::’f, +reosd
dr 9% cowdiff - reind

Derived by considering the curve r =
funetion with » JU0) cos @ and y

AREA
The area enclosed by rays at # -

curver = (@) is ,
oy
/ 2!"‘ df).

ooyl = = f(#)sind

o and @ =

A=

« Derivative: ['(r) = L (0!
« Infegral: ff(:m; =C+ i

n=i L 1"1 s
| The radius of convergence of both f'(x) and ff(;'] dr is R
_' (but no prediction about convergence at o — R and a + R).

B

)llH

TAYLOR AND MACLAURIN SERIES |

| 1f the function f can be represented by a power series around
' a, then the coefficients a,, are given by

(n)
| i = ! ”(n)
|
| Here, £ is the n'" derivative of f, and n! is n factorial:
Inl=1x2x...xn, with 0! 21,

TAYLOR SERIES
The Taylor series for f centered at a has the form

% pm)
) = z i mlﬂ] .

l =
|
|

(z—

| It converges to f at a or in some interval around a.
| * Maclaurin series: Byname for a Taylor series centered at (;

: (n)
! Flay= Zf (0) .

#=ll
* Taylor polynomials: A Taylor series for [ cut off after the =
term gives an n'"-degree po]ynomial approximation to f:
(
f2) = Tulz) = z ! ’tUJ o
k=0
Ex: The third degree Taylor polynomial for flo) =sing is
T+ = ‘ . B: The umgent line is the first-degree appmxlmtl.on
LAGRANGE ERROR BOUND (a.k.a. Taylor's Inequality)
Lel ¢ be a point within the interval of convergence of the Taylor
series for f about a. If the {n + 1)* derivative of f is bounded,
‘ specifically, if | /" +1)(2)| < M for all |+ — a| < ¢, then:
|

* The error in evaluating f(c) by the Taylor series truncated

after the n'"-degree term isboundedhy % :”1 . In other
words, | f(e) — Ty (e)| <
* In general, ( + n-
! Mz — gt
| |f (@) = Tn(2)| < §:+1[)1 whenever [r — af < e.

| Rule of thumb: The error of a truncated Taylor series is less
| than something a lot like the next term after the eutoff.

A power serles is a formal function in the form of an i
po]yriomia]:
Z an(r — a)" = ag + a;(r — a) + az(z —a)* +
n=0
The o, are coefficients and r is the variable. This series is
centered at a. It may converge for some x and diverge for others.

CONVERGENCE
A power series about a converges in one of three ways.
1. Only at z = a. Corresponds to R = 0.
2. For all real x, Corresponds to i = co.
3.In an interval of radius R around a. That is, the series
converges for ¢ — a| < R and diverges for [z — a] > a. It
may or may not converge at endpoints a — R and a + .
The number 17 is the radius of convergence. It is related to the
interval of convergence, but the interval also takes into account
convergence at @ — Rand a 4+ R.

FUNCTIONS AS POWER SERIES b
The function f given by f(x) = 3 a,(x — a)" is defined and
=l

differentiable on (a — R, a 4 R), where R is the radius of
convergence of the power series, It may be integrated or
differentiated term by term:

WM | |MPORTANT MACLAURIN SERIES
Interval of convergence
’ 7 r” = an
e* l+:|=+§- EI
all real =
! T & & LR
s Pt oMy "’nz_n[“” 2n+ 1
all real =
&Y g =
o s T ""E“‘ 3 (2n)'
all real «
1 oo
R n
Yoo 1+z+2"+2"+ ..E.nr
lxf <1
* ¥ =
In{l =) —m_i-i-“ = "1-"
-1<z<1

f(0) as a pilrmﬂeirii'_E

11 bounded by the
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